Лотки для теплотрасс

Теорема об изменения количества движения материальной точки имеет вид. Теорема об изменении количества движения механической системы

Теорема об изменения количества движения материальной точки имеет вид. Теорема об изменении количества движения механической системы

Количеством движения материальной точки называется векторная величина mV, равная произведению массы точки на вектор ее скорости. Вектор mV приложен к движущейся точке.

Количеством движения системы называют векторную величину Q , равную геометрической сумме (главному вектору) количеств движения всех точек системы:

Вектор Q является свободным вектором. В системе единиц СИ модуль количества движения измеряется в кг м/с или Н с.

Как правило, скорости всех точек системы различны (см., например, распределение скоростей точек катящегося колеса, показанное на рис. 6.21), и поэтому непосредственное суммирование векторов в правой части равенства (17.2) является затруднительным. Найдем формулу, с помощью которой величина Q вычисляется значительно легче. Из равенства (16.4) следует, что

Взяв от обеих частей производную по времени, получим Отсюда, учитывая равенство (17.2), находим, что

т. е. количество движения системы равно произведению массы всей системы на скорость ее центра масс.

Заметим, что вектор Q, подобно главному вектору сил в статике, является некоторой обобщенной векторной характеристикой движения всей механической системы. В общем случае движения системы ее количество движения Q можно рассматривать как характеристику поступательной части движения системы вместе с ее центром масс. Если при движении системы (тела) центр масс неподвижен, то количество движения системы будет равно нулю. Таково, например, количество движения тела, вращающегося вокруг неподвижной оси, проходящей через его центр масс.

Пример. Определить количество движения механической системы (рис. 17.1, а), состоящей из груза А массой т А - 2 кг, однородного блока В массой 1 кг и колеса D массой m D - 4 кг. Груз А движется со скоростью V A - 2 м/с, колесо D катится без скольжения, нить нерастяжима и невесома. Решение. Количество движения системы тел

Тело А движется поступательно и Q A =m A V A (численно Q A = 4 кг м/с, направление вектора Q A совпадает с направлением V A). Блок В совершает вращательное движение вокруг неподвижной оси, проходящей через его центр масс; следовательно, Q B - 0. Колесо D совершает плоскопараллельное


движение; его мгновенный центр скоростей находится в точке К , поэтому скорость его центра масс (точки Е) равна V E = V A /2= 1 м/с. Количество движения колеса Q D - m D V E - 4 кг м/с; вектор Q D направлен горизонтально влево.

Изобразив векторы Q A и Q D на рис. 17.1, б , находим количество движения Q системы по формуле (а). Учитывая направления и числовые значения величин, получим Q ~^Q A +Q E =4л/2~ кг м/с, направление вектора Q показано на рис. 17.1, б.

Учитывая, что a -dV/dt, уравнение (13.4) основного закона динамики можно представить в виде

Уравнение (17.4) выражает теорему об изменении количества движения точки в дифференциальной форме: в каждый момент времени производная по времени от количества движения точки равна действующей на точку силе. (По существу это другая формулировка основного закона динамики, близкая к той, которую дал Ньютон.) Если на точку действует несколько сил, то в правой части равенства (17.4) будет равнодействующая сил, приложенных к материальной точке.

Если обе части равенства умножить на dt, то получим

Векторная величина, стоящая в правой части этого равенства, характеризует действие, оказываемое на тело силой за элементарный промежуток времени dt эту величину обозначают dS и называют элементарным импульсом силы, т. е.

Импульс S силы F за конечный промежуток времени /, - / 0 определяется как предел интегральной суммы соответствующих элементарных импульсов, т. е.


В частном случае, если сила F постоянна по модулю и по направлению, то S = F(t | -/ 0) и S- F(t l - / 0). В общем случае модуль импульса силы может быть вычислен по его проекциям на координатные оси:


Теперь, интегрируя обе части равенства (17.5) при т = const, получим

Уравнение (17.9) выражает теорему об изменении количества движения точки в конечной (интегральной) форме: изменение количества движения точки за некоторый промежуток времени равно импульсу действующей на точку силы (или импульсу равнодействующей всех приложенных к ней сил) за тот же промежуток времени.

При решении задач пользуются уравнениями этой теоремы в проекциях на координатные оси


Теперь рассмотрим механическую систему, состоящую из п материальных точек. Тогда для каждой точки можно применить теорему об изменении количества движения в форме (17.4), учитывая приложенные к точкам внешние и внутренние силы:

Суммируя эти равенства и учитывая, что сумма производных равна производной от суммы, получаем

Так как по свойству внутренних сил HF k =0 и по определению количества движения ^fn k V/ c = Q , то окончательно находим


Уравнение (17.11) выражает теорему об изменении количества движения системы в дифференциальной форме: в каждый момент времени производная по времени от количества движения системы равна геометрической сумме всех внешних сил, действующих на систему.

Проецируя равенство (17.11) на координатные оси, получим

Умножая обе части (17.11) на dt и интегрируя, получим

где 0, Q 0 - количества движения системы в моменты времени соответственно и / 0 .

Уравнение (17.13) выражает теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за какое-либо время равно сумме импульсов всех внешних сил, действующих на систему за то же время.

В проекциях на координатные оси получим

Из теоремы об изменении количества движения системы можно получить следующие важные следствия, которые выражают закон сохранения количества движения системы.

  • 1. Если геометрическая ^умма всех внешних сил, действующих на систему, равна нулю (LF k =0), то из уравнения (17.11) следует, что при этом Q = const, т. е. вектор количества движения системы будет постоянен по модулю и направлению.
  • 2. Если внешние силы, действующие на систему, таковы, что сумма их проекций на какую-либо ось равна нулю (например, I e kx = 0), то из уравнений (17.12) следует, что при этом Q x = const, т. е. проекция количества движения системы на эту ось остается неизменной.

Отметим, что внутренние силы системы не участвуют в уравнении теоремы об изменении количества движения системы. Эти силы, хотя и влияют на количество движения отдельных точек системы, не могут изменить количество движения системы в целом. Учитывая это обстоятельство, при решении задач рассматриваемую систему целесообразно выбирать так, чтобы неизвестные силы (все или их часть) сделать внутренними.

Закон сохранения количества движения удобно применять в тех случаях, когда по изменению скорости одной части системы надо определить скорость другой ее части.

Задача 17.1. К тележке массой т х - 12 кг, движущейся по гладкой горизонтальной плоскости, в точке А с помощью цилиндрического шарнира прикреплен невесомый стержень AD длиной /= 0,6 м с грузом D массой т 2 - 6 кг на конце (рис. 17.2). В момент времени / 0 = 0, когда скорость тележки и {) - 0,5 м/с, стержень AD начинает вращаться вокруг оси А, перпендикулярной плоскости чертежа, по закону ф = (тг/6)(3^ 2 - 1) рад (/-в секундах). Определить: u=f.

§ 17.3. Теорема о движении центра масс

Теорему об изменении количества движения механической системы можно выразить еще в другой форме, носящей название теоремы о движении центра масс.

Подставив в уравнение (17.11) равенство Q =MV C , получим

Если масса М системы постоянна, то получим

где а с - ускорение центра масс системы.

Уравнение (17.15) и выражает теорему о движении центра масс системы: произведение массы системы на ускорение ее центра масс равно геометрической сумме всех внешних сил, действующих на систему.

Проецируя равенство (17.15) на координатные оси, получим

где x c , y c , z c - координаты центра масс системы.

Эти уравнения представляют собой дифференциальные уравнения движения центра масс в проекциях на оси декартовой системы координат.

Обсудим полученные результаты. Предварительно напомним, что центр масс системы является геометрической точкой, расположенной подчас вне геометрических границ тела. Действующие же на механическую систему силы (внешние и внутренние) приложены ко всем материальным точкам системы. Уравнения (17.15) дают возможность определить движение центра масс системы, не определяя движения отдельных ее точек. Сопоставив уравнения (17.15) теоремы о движении центра масс и уравнения (13.5) второго закона Ньютона для материальной точки, приходим к заключению: центр масс механической системы движется как материальная точка, масса которой равна массе всей системы, и как будто бы к этой точке приложены все внешние силы, действующие на систему. Таким образом, решения, которые получаем, рассматривая данное тело как материальную точку, определяют закон движения центра масс этого тела.

В частности, если тело движется поступательно, то кинематические характеристики всех точек тела и его центра масс одинаковы. Поэтому поступательно движущееся тело можно всегда рассматривать как материальную точку с массой, равной массе всего тела.

Как видно из (17.15), внутренние силы, действующие на точки системы, не оказывают влияния на движение центра масс системы. Внутренние силы могут оказать влияние на движение центра масс в тех случаях, когда под их воздействием меняются внешние силы. Примеры этого будут приведены далее.

Из теоремы о движении центра масс можно получить следующие важные следствия, которые выражают закон сохранения движения центра масс системы.

1. Если геометрическая сумма всех внешних сил, действующих на систему, равна нулю (LF k =0), то из уравнения (17.15) следует,

что при этом а с = 0 или V c = const, т. е. центр масс этой системы

движется с постоянной по модулю и направлению скоростью (иначе, равномерно и прямолинейно). В частном случае, если вначале центр масс был в покое (V c =0), то он и останется в покое; откуда

следует, что его положение в пространстве не изменится, т. е. r c = const.

2. Если внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например, ось х) равна нулю (?F e kx = 0), то из уравнения (17.16) следует, что при этом х с =0 или V Cx =х с = const, т. е. проекция скорости центра масс системы на эту ось есть величина постоянная. В частном случае, если в начальный момент Vex = 0, то и в любой последующий момент времени это значение сохранится, а отсюда следует, что координата х с центра масс системы не изменится, т. е. х с - const.

Рассмотрим примеры, иллюстрирующие закон движения центра масс.

Примеры. 1. Как было отмечено, движение центра масс зависит только от внешних сил, внутренними силами изменить положение центра масс нельзя. Но внутренние силы системы могут вызвать внешние воздействия. Так, движение человека по горизонтальной поверхности происходит под действием сил трения между подошвами его обуви и поверхностью дороги. Силой своих мышц (внутренние силы) человек ногами отталкивается от поверхности дороги, отчего в точках контакта с дорогой возникает сила трения (внешняя для человека), направленная в сторону его движения.

  • 2. Аналогичным образом двигается автомобиль. Внутренние силы давления в его двигателе заставляют вращаться колеса, но так как последние имеют сцепление с дорогой, то возникающие силы трения «толкают» машину вперед (в результате колеса не вращаются, а двигаются плоскопараллельно). Если же дорога будет абсолютно гладкой, то центр масс автомобиля будет неподвижен (при нулевой начальной скорости) и колеса при отсутствии трения будут пробуксовывать, т. е. совершать вращательное движение.
  • 3. Движение с помощью гребного винта, пропеллера, весел происходит за счет отбрасывания некоторой массы воздуха (или воды). Если рассматривать отбрасываемую массу и движущееся тело как одну систему, то силы взаимодействия между ними, как внутренние, не могут изменить суммарное количество движения этой системы. Однако каждая из частей этой системы будет двигаться, например, лодка вперед, а вода, которую отбрасывают весла, - назад.
  • 4. В безвоздушном пространстве при движении ракеты «отбрасываемую массу» следует «брать с собой»: реактивный двигатель сообщает движение ракете за счет отброса назад продуктов горения топлива, которым заправлена ракета.
  • 5. При спуске на парашюте можно управлять движением центра масс системы человек - парашют. Если мышечными усилиями человек подтягивает стропы парашюта так, что меняется форма его купола либо угол атаки воздушного потока, то это вызовет изменение и внешнего воздействия воздушного потока, а тем самым оказывается влияние на движение всей системы.

Задача 17.2. В задаче 17.1 (см. рис. 17.2) определить: 1) закон движения тележки х { = /)(/), если известно, что в начальный момент времени t 0 = О система находилась в покое и координата х 10 = 0; 2) ^акон изменения со временем суммарного значения нормальной реакции N(N = N" + N") горизонтальной плоскости, т. е. N=f 2 (t).

Решение. Здесь, как и в задаче 17.1, рассмотрим систему, состоящую из тележки и груза D, в произвольном положении под действием приложенных к ней внешних сил (см. рис. 17.2). Координатные оси Оху проведем так, чтобы ось х была горизонтальна, а ось у проходила через точку А 0 , т. е. место расположения точки А в момент времени t-t 0 - 0.

1. Определение закона движения тележки. Для определения х, = /,(0 воспользуемся теоремой о движении центра масс системы. Составим дифференциальное уравнение его движения в проекции на ось х:

Так как все внешние силы вертикальны, то T,F e kx = 0, и, следовательно,

Проинтегрировав это уравнение, найдем, что Мх с = В, т. е. проекция скорости центра масс системы на ось х есть величина постоянная. Так как в начальный момент времени

Интегрируя уравнение Мх с = 0, получим

т. е. координата х с центра масс системы постоянна.

Запишем выражение Мх с для произвольного положения системы (см. рис. 17.2), приняв во внимание, что х А - х { , x D - х 2 и х 2 - х { - I sin ф. В соответствии с формулой (16.5), определяющей координату центра масс системы, в данном случае Мх с - т { х { + т 2 х 2 ".

для произвольного момента времени

для момента времени / () = 0, х { = 0 и

В соответствии с равенством (б) координата х с центра масс всей системы остается неизменной, т. е. хД^,) = x c (t). Следовательно, приравняв выражения (в) и (г), получим зависимость координаты х, от времени.

О т в е т: Х - 0,2 м, где t - в секундах.

2. Определение реакции N. Для определения N=f 2 (t ) составим дифференциальное уравнение движения центра масс системы в проекции на вертикальную ось у (см. рис. 17.2):

Отсюда, обозначив N= N + N", получим

По формуле, определяющей ординату у с центра масс системы, Му с = т { у х + т 2 у 2 , где у, = у С1 , у 2 = y D = У а ~ 1 cos Ф» получим

Продифференцировав это равенство два раза по времени (учитывая при этом, что у С1 и у А величины постоянные и, следовательно, их производные равны нулю), найдем


Подставив это выражение в уравнение (е), определим искомую зависимость N от t.

Ответ: N- 176,4 + 1,13,

где ф = (я/6)(3/ -1), t - в секундах, N- в ньютонах.

Задача 17.3. Электрический мотор массой т х прикреплен на горизонтальной поверхности фундамента болтами (рис. 17.3). На валу мотора под прямым углом к оси вращения закреплен одним концом невесомый стержень длиной /, на другом конце стержня насажен точечный груз А массой т 2 . Вал вращается равномерно с угловой скоростью со. Найти горизонтальное давление мотора на болты. Решение. Рассмотрим механическую систему, состоящую из мотора и точечного груза А, в произвольном положении. Изобразим действующие на систему внешние силы: силы тяжести Р х, Р 2 , реакцию фундамента в виде вертикальной силы N и горизонтальной силы R. Проведем координатную ось х горизонтально.

Чтобы определить горизонтальное давление мотора на болты (а оно будет численно равно реакции R и направлено противоположно вектору R ), составим уравнение теоремы об изменении количества движения системы в проекции на горизонтальную ось х:

Для рассматриваемой системы в ее произвольном положении, учитывая, что количество движения корпуса мотора равно нулю, получим Q x = - т 2 У А сощ. Принимая во внимание, что V A = a з/, ф = со/ (вращение мотора равномерное), получим Q x - - m 2 co/cos со/. Дифференцируя Q x по времени и подставляя в равенство (а), найдем R- m 2 co 2 /sin со/.

Заметим, что именно такие силы являются вынуждающими (см. § 14.3), при их воздействии возникают вынужденные колебания конструкций.

Упражнения для самостоятельной работы

  • 1. Что называют количеством движения точки и механической системы?
  • 2. Как изменяется количество движения точки, равномерно движущейся по окружности?
  • 3. Что характеризует импульс силы?
  • 4. Влияют ли внутренние силы системы на ее количество движения? На движение ее центра масс?
  • 5. Как влияют на движение центра масс системы приложенные к ней пары сил?
  • 6. При каких условиях центр масс системы находится в покое? движется равномерно и прямолинейно?

7. В неподвижной лодке при отсутствии течения воды на корме сидит взрослый человек, а на носу лодки - ребенок. В каком направлении переместится лодка, если они поменяются местами?

В каком случае модуль перемещения лодки будет большим: 1) если ребенок перейдет к взрослому на корму; 2) если взрослый перейдет к ребенку на нос лодки? Каковы будут при этих движениях перемещения центра масс системы «лодка и два человека»?

Аналогично тому, как для одной материальной точки, выведем теорему об изменении количества движения для системы в различных формах.

Преобразуем уравнение (теорема о движении цента масс механической системы)

следующим образом:

;

;

Полученное уравнение выражает теорему об изменении количества движения механической системы в дифференциальной форме: производная от количества движения механической системы по времени равна главному вектору внешних сил, действующих на систему .

В проекциях на декартовы оси координат:

; ; .

Беря интегралы от обеих частей последних уравнений по времени, получим теорему об изменении количества движения механической системы в интегральной форме: изменение количества движения механической системы равно импульсу главного вектора внешних сил, действующих на систему .

.

Или в проекциях на декартовы оси координат:

; ; .

Следствия из теоремы (законы сохранения количества движения)

Закон сохранения количества движения получаются как частные случаи теоремы об изменении количества движения для системы в зависимости от особенностей системы внешних сил. Внутренние силы могут быть любыми, так как они не влияют на изменения количества движения.

Возможны два случая:

1. Если векторная сумма всех внешних сил, приложенных к системе, равна нулю , то количество движения системы постоянно по величине и направлению

2. Если равна нулю проекция главного вектора внешних сил на какую либо координатную ось и/или и/или , то проекция количества движения на эти же оси является величиной постоянной, т.е. и/или и/или соответственно.

Аналогичные записи можно сделать и для материальной точки и для материальной точки.

Условие задачи . Из орудия, масса которого М , вылетает в горизонтальном направлении снаряд массы m со скоростью v . Найти скорость V орудия после выстрела.

Решение . Все внешние силы, действующие на механическую систему орудие-снаряд, вертикальны. Значит, на основании следствия из теоремы об изменении количества движения системы, имеем: .

Количество движения механической системы до выстрела:

Количество движения механической системы после выстрела:

.

Приравнивая правые части выражений, получим, что

.

Знак «-» в полученной формуле указывает на то, что после выстрела орудие откатится в направлении, противоположном оси Ox .

ПРИМЕР 2. Струя жидкости плотностью вытекает со скоростью V из трубы с площадью поперечного сечения F и ударяется под углом о вертикальную стенку. Определить давление жидкости на стену.

РЕШЕНИЕ. Применим теорему об изменении количества движения в интегральной форме к объему жидкости массой m ударяющемуся о стену за некоторый промежуток времени t .

УРАВНЕНИЕ МЕЩЕРСКОГО

(основное уравнение динамики тела переменной массы)

В современной технике возникают случаи, когда масса точки и системы не остается постоянной в процессе движения, а изменяется. Так, например, при полете космических ракет, вследствие выбрасывания продуктов сгорания и отдельных ненужных частей ракет, изменение массы достигает 90-95% общей начальной величины. Но не только космическая техника может быть примером динамики движения переменной массы. В текстильной промышленности происходит значительное изменения массы различных веретен, шпуль, рулонов при современных скоростях работы станков и машин.

Рассмотрим главные особенности, связанные с изменением массы, на примере поступательного движения тела переменной массы. К телу переменной массы нельзя непосредственно применить основной закон динамики. Поэтому получим дифференциальные уравнения движения точки переменной массы, применяя теорему об изменении количества движения системы.

Пусть точка массой m+dm движется со скоростью . Затем происходит отрыв от точки некоторой частицы массой dm движущейся со скоростью .

Количество движения тела до отрыва частицы:

Количество движения системы, состоящей из тела и оторвавшейся частицы, после ее отрыва:

Тогда изменение количества движения:

Исходя из теоремы об изменении количества движения системы:

Обозначим величину - относительная скорость частицы:

Обозначим

Величину R называют реактивной силой. Реактивная сила является тягой двигателя, обусловленная выбросом газа из сопла.

Окончательно получим

-

Данная формула выражает основное уравнение динамики тела переменной массы (формула Мещерского). Из последней формулы следует, что дифференциальные уравнения движения точки переменной массы имеют такой же вид, как и для точки постоянной массы, кроме приложенных к точке дополнительно реактивной силы, обусловленной изменением массы.

Основное уравнение динамики тела переменной массы свидетельствует о том, что ускорение этого тела формируется не только за счет внешних сил, но и за счет реактивной силы.

Реактивная сила – это сила, родственная той, которую ощущает стреляющий человек - при стрельбе из пистолета она ощущается кистью руки; при стрельбе из винтовки воспринимается плечом.

Первая формула Циолковского (для одноступенчатой ракеты)

Пусть точка переменной массы или ракета движется прямолинейно под действием только одной реактивной силы. Так как для многих современных реактивных двигателей , где - максимально допускаемая конструкцией двигателя реактивная сила (тяга двигателя); - сила тяжести, действующая на двигатель, находящийся на земной поверхности. Т.е. изложенное позволяет составляющей в уравнении Мещерского пренебречь и к дальнейшему анализу принять это уравнение в форме: ,

Обозначим:

Запас топлива (при жидкостных реактивных двигателях - сухая масса ракеты (остающаяся её масса после выгорания всего топлива);

Масса отделившихся от ракеты частиц; рассматривается как переменная величина, изменяющаяся от до .

Запишем уравнение прямолинейного движения точки переменной массы в следующем виде вид

Так как формула для определения переменной массы ракеты

Следовательно, уравнения движения точки Беря интегралы от обеих частей получим

где - характеристическая скорость – это скорость, которую приобретает ракета под действием тяги после извержения из ракеты всех частиц (при жидкостных реактивных двигателях – после выгорания всего топлива).

Вынесенная за знак интеграла (что можно делать на основании известной из высшей математики теоремы о среднем) - это средняя скорость извергаемых из ракеты частиц.

Просмотр: эта статья прочитана 14066 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Количество движения

Количество движения материальной точки - векторная величина, равная произведению массы точки на вектор ее скорости.

Единицей измерения количества движения является (кг м/с).

Количество движения механической системы - векторная величина, равная геометрической сумме (главному вектору) количества движения механической системы равняется произведению массы всей системы на скорость ее центра масс.

Когда тело (или система) движется так, что ее центр масс неподвижен, то количество движения тела равняется нулю (например, вращение тела вокруг неподвижной оси, проходящей через центр масс тела).

В случае сложного движения, количество движения системы не будет характеризовать вращательную часть движения при вращении вокруг центра масс. Т.е., количество движения характеризует только поступательное движение системы (вместе с центром масс).

Импульс силы

Импульс силы характеризует действие силы за некоторый промежуток времени.

Импульс силы за конечный промежуток времени определяется как интегральная сумма соответствующих элементарных импульсов.

Теорема об изменении количества движения материальной точки

(в дифференциальной форм е ):

Производная по времени от количества движения материальной точки равна геометрической сумме действующих на точки сил.

(в интегральной форме ):

Изменение количества движения материальной точки за некоторый промежуток времени равняется геометрической сумме импульсов сил, приложенных к точке за этот промежуток времени.

Теорема об изменении количества движения механической системы

(в дифференциальной форме ):

Производная по времени от количества движения системы равна геометрической сумме всех внешних сил, действующих на систему.

(в интегральной форме ):

Изменение количества движения системы за некоторый промежуток времени равняется геометрической сумме импульсов внешних сил, действующих на систему за этот промежуток времени.

Теорема позволяет исключить из рассмотрения заведомо неизвестные внутренние силы.

Теорема об изменении количества движения механической системы и теорема о движении центра масс являются двумя разными формами одной теоремы.

Закон сохранения количества движения системы

  1. Если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянным по направлению и по модулю.
  2. Если сумма проекций всех действующих внешних сил на любую произвольную ось равна нулю, то проекция количества движения на эту ось является величиной постоянной.

Выводы :

  1. Законы сохранения свидетельствуют, что внутренние силы не могут изменить суммарное количество движения системы.
  2. Теорема об изменении количества движения механической системы не характеризует вращательное движение механической системы, а только поступательное.

Приведен пример: Определить количество движения диска определенной массы, если известна его угловая скорость и размер.

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения


Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении


Определение усилий в стержнях плоской фермы
Пример решения задачи на определение усилий в стержнях плоской фермы методом Риттера и методом вырезания узлов


Применение теоремы об изменении кинетического момента
Пример решения задачи на применение теоремы об изменении кинетического момента для определения угловой скорости тела, совершающего вращение вокруг неподвижной оси.

Для материальной точки основной закон динамики можно представить в виде

Умножая обе части этого соотношения слева векторно на радиус-вектор (рис. 3.9), получаем

(3.32)

В правой части этой формулы имеем момент силы относительно точки О. Преобразуем левую часть, применив формулу производной векторного произведения

Но как векторное произведение параллельных векторов. После этого получаем

(3.33)

Первая производная по времени момента количества движения точки относительно какого-либо центра равна моменту силы относительно того же центра.


Пример вычисления кинетического момента системы. Вычислить кинетический момент относительно точки О системы, состоящей из цилиндрического вала массой М = 20 кг и радиусом R = 0.5м и спускающегося груза массой m = 60 кг (рисунок 3.12). Вал вращается вокруг оси Oz с угловой скоростью ω = 10 с -1 .

Рисунок 3.12

; ;

При заданных входных данных кинетический момент системы

Теорема об изменении кинетического момента системы. К каждой точке системы приложим равнодействующие внешних и внутренних сил. Для каждой точке системы можно применить теорему об изменении момента количества движения, например в форме (3.33)

Суммируя по всем точкам системы и учитывая, что сумма производных равна производной от суммы, получим

По определению кинетического момента системы и свойству внешних и внутренних сил

поэтому полученное соотношение можно представить в виде

Первая производная по времени кинетического момента системы относительно какой-либо точки равна главному моменту внешних сил, действующих на систему, относительно той же точки.

3.3.5. Работа силы

1) Элементарная работа силы равна скалярному произведению силы на дифференциал радиус вектора точки приложения силы (рис. 3.13)

Рисунок 3.13

Выражение (3.36) можно записать также в следующих эквивалентных формах

где - проекция силы на направление скорости точки приложения силы.

2) Работа силы на конечном перемещении

Интегрируя элементарную работу силы, получим следующие выражения для работы силы на конечном перемещении из точки А в точку В

3) Работа постоянной силы

Если сила постоянна, то из (3.38) следует

Работа постоянной силы не зависит от формы траектории, а зависит только от вектора перемещения точки приложения силы .

4) Работа силы веса

Для силы веса (рис. 3.14) и из (3.39) получим

Рисунок 3.14

Если движение происходит из точки В в точку А, то

В общем случае

Знак «+» соответствует движению точки приложения силы «вниз», знак «-» - вверх.

4) Работа силы упругости

Пусть ось пружины направлена по оси x (рис.3.15), а конец пружины перемещается из точки 1 в точку 2, тогда из (3.38) получим

Если жесткость пружины равна с , то , тогда

А (3.41)

Если конец пружины перемещается из точки 0 в точку 1, то в этом выражении заменяем , , тогда работа силы упругости примет вид

(3.42)

где - удлинение пружины.

Рисунок 3.15

5) Работа силы приложенной к вращающемуся телу. Работа момента.

На рис. 3.16 показано вращающееся тело, к которому приложена произвольная сила . При вращении точка приложения этой силы движется по окружности.

Так как масса точки постоянна, а ее ускорение то уравнение (2), выражающее основной закон динамики, можно представить в виде

Уравнение (32) выражает одновременно теорему об изменении количества движения точки в дифференциальной форме: производная по времени от количества движения точки равна сумме действующих на точку сил

Пусть движущаяся точка имеет в момент времени скорость а в момент - скорость Умножим тогда обе части равенства (32) на и возьмем от них определенные интегралы. При этом справа, где интегрирование идет по времени, пределами интеграла будут а слева, где интегрируется скорость, пределами интеграла будут соответствующие значения скорости

Так как интеграл от равен то в результате получим

Стоящие справа интегралы, как следует из формулы (30), представляют собой импульсы действующих сил. Поэтому окончательно будет

Уравнение (33) выражает теорему об изменении количества движения точки в конечном виде: изменение количества движения точки за некоторый промежуток времени равно сумме импульсов всех действующих на точку сил за тот же промежуток времени.

При решении задач вместо векторного уравнения (33) часто пользуются уравнениями в проекциях. Проектируя обе части равенства (33) на координатные оси, получим

В случае прямолинейного движения, происходящего вдоль оси теорема выражается первым из этих уравнений.

Решение задач. Уравнения (33) или (34) позволяют, зная как при движении точки изменяется ее скорость, определить импульс действующих сил (первая задача динамики) или, зная импульсы действующих сил, определить, как изменяется при движении скорость точки (вторая задача динамики). При решении второй задачи, когда заданы силы, надо вычислить их импульсы, Как видно из равенств (30) или (31), это можно сделать лишь тогда, когда силы постоянны или зависят только от времени.

Таким образом, уравнения (33), (34) можно непосредственно использовать для решения второй задачи динамики, когда в задаче в число данных и искомых величин входят: действующие силы, время движения точки и ее начальная и конечная скорости (т. е. величины ), причем силы должны быть постоянными или зависящими только от времени.

Задача 95. Точка, масса которой кг, движется по окружности с численно постоянной скоростью Определить импульс действующей на точку силы за время, в течение которого точка проходит четверть окружности

Решение. По теореме об изменении количества движения Строя геометрически разность этих количеств движения (рис. 222), находим из полученного прямоугольного треугольника

Но по условиям задачи следовательно,

Для аналитического подсчета можно, используя первые два из уравнений (34), найти

Задача 96. Грузу, имеющему массу и лежащему на горизонтальной плоскости, сообщают (толчком) начальную скорость Последующее движение груза тормозится постоянной силой F. Определить, через сколько времени груз остановится,

Решение. По данным задачи видно, что для определения времени движения можно воспользоваться доказанной теоремой. Изображаем груз в произвольном положении (рис. 223). На него действуют сила тяжести Р, реакция плоскости N и тормозящая сила F. Направляя ось в сторону движения, составляем первое из уравнений (34)

В данном случае - скорость в момент остановки), а . Из сил проекцию на ось дает только сила F. Так как она постоянна, то где - время торможения. Подставляя все эти данные в уравнение (а), получаем откуда искомое время