Бетонные лотки

Вращательные тела. Вращательное движение твердого тела: уравнение, формулы

Вращательные тела. Вращательное движение твердого тела: уравнение, формулы

Вращательным называют такое движение, при котором две точки, связанные с телом, следовательно, и прямая, проходящая через эти точки, остаются неподвижными во время движения (рис. 2.16). Неподвижную прямую А В называют осью вращения.

Рис. 2.1В. К определению вращательного движения тела

Положение тела при вращательном движении определяет угол поворота ф, рад (см. рис. 2.16). При движении угол поворота меняется со временем, т.е. закон вращательного движения тела определяется как закон изменения во времени величины двугранного угла Ф = ф(/) между неподвижной полуплоскостью К () , проходящей через ось вращения, и подвижной п 1 полуплоскостью, связанной с телом и также проходящей через ось вращения.

Траектории всех точек тела при вращательном движении представляют собой концентрические окружности, расположенные в параллельных плоскостях с центрами на оси вращения.

Кинематические характеристики вращательного движения тела. Аналогично тому, как были введены кинематические характеристики для точки вводят кинематическое понятие, характеризующее быстроту изменения функции ф(с), которая определяет положение тела при вращательном движении, т.е. угловую скорость со = ф = с/ф/с//, размерность угловой скорости [со] = рад/с.

В технических расчетах часто используют выражение угловой скорости другой размерностью - через число оборотов в минуту: [я] = об/мин, а связь между п и со можно представить в виде: со = 27ш/60 = 7ш/30.

В общем случае угловая скорость изменяется во времени. Мерой быстроты изменения угловой скорости является угловое ускорение е = с/со/с//= со = ф, размерность углового ускорения [е] = рад/с 2 .

Введенные угловые кинематические характеристики полностью определяются заданием одной функции - угла поворота от времени.

Кинематические характеристики точек тела при вращательном движении. Рассмотрим точку М тела, находящуюся на расстоянии р от оси вращения. Эта точка движется по окружности радиуса р (рис. 2.17).


Рис. 2.17.

точек тела при его вращении

Длина дуги M Q M окружности радиуса р определяется как s = ptp, где ф - угол поворота, рад. В случае, если закон движения тела задан как ф = ф(г), то закон движения точки М по траектории определяет формула S = рф(7).

Пользуясь выражениями кинематических характеристик при естественном способе задания движения точки, получим кинематические характеристики для точек, вращающегося тела: скорость по формуле (2.6)

V = 5 = рф = рсо; (2.22)

касательное ускорение согласно выражению (2.12)

я т = К = сор = ер; (2.23)

нормальное ускорение по формуле (2.13)

а„ = И 2 /р = со 2 р 2 /р = огр; (2.24)

полное ускорение с использованием выражения (2.15)

а = -]а + а] = рх/е 2 + со 4 . (2.25)

За характеристику направления полного ускорения принимают р - угол отклонения вектора полного ускорения от радиуса окружности, описываемой точкой (рис. 2.18).

Из рис. 2.18 получаем

tgjLi = aja n =ре/рсо 2 =г/(о 2 . (2.26)

Рис. 2.18.

Отметим, что все кинематические характеристики точек вращающегося тела пропорциональны расстояниям до оси вращения. Ве-

личины их определяют через производные одной и той же функции - угла поворота.

Векторные выражения для угловых и линейных кинематических характеристик. Для аналитического описания угловых кинематических характеристик вращающегося тела вместе с осью вращения вводят понятие вектора угла поворота (рис. 2.19): ф = ф(/)А:, где к - еди

ничный вектор оси вращения

1; к =соп51 .

Направлен вектор ф по этой оси так, чтобы с «конца» его видеть

поворот, происходящим против хода часовой стрелки.

Рис. 2.19.

характеристик в векторной форме

Если известен вектор ф(/), то все остальные угловые характеристики вращательного движения можно представить в векторной форме:

  • вектор угловой скорости со = ф = ф к. Направление вектора угловой скорости определяет знак производной угла поворота;
  • вектор углового ускорения є = со = ф к. Направление этого вектора определяет знак производной угловой скорости.

Введенные векторы со и є позволяют получить векторные выражения для кинематических характеристик точек (см. рис. 2.19).

Заметим, что модуль вектора скорости точки совпадает с модулем векторного произведения вектора угловой скорости и радиуса-вектора: |сох г = согвіпа = сор. Учитывая направления векторов со и г и правило направления векторного произведения, можно записать выражение для вектора скорости:

V = со хг.

Аналогично легко показать, что

  • ? X Ґ
  • - егБіпа = єр = а т и

Сосор = со р = я.

(роме этого векторы этих кинематических характеристик совпадают по направлению с соответствующими векторными произведениями.

Следовательно, векторы касательного и нормального ускорений можно представить в виде векторных произведений:

  • (2.28)
  • (2.29)

а х = г х г

а = со х V.

Вращательным движением твердого тела вокруг неподвижной оси называется такое его движение, при котором какие – нибудь две точки, принадлежащие телу (или неизменно связанные с ним), остаются во все время движения неподвижными (рис. 2.2).

Рисунок 2.2

Проходящая через неподвижные точки А иВ прямая называетсяосью вращения. Так как расстояние между точками твердого тела должны оставаться неизменными, то очевидно, что при вращательном движении все точки, принадлежащие оси будут неподвижны, а все остальные будут описывать окружности, плоскости которых перпендикулярны оси вращения, а центры лежат на этой оси. Для определения положения вращающегося тела проведем через ось вращения, вдоль которой направлена осьAz , полуплоскостьІ – неподвижную и полуплоскостьІІ врезанную в само тело и вращающуюся вместе с ним. Тогда положение тела в любой момент времени однозначно определится взятым с соответствующим знаком угломφ между этими плоскостями, который назовемуглом поворота тела. Будем считать уголφ положительным, если он отложен от неподвижной плоскости в направлении против хода часовой стрелки (для наблюдателя, смотрящего с положительного конца осиAz ), а отрицательным, если по ходу часовой стрелки. Измерять уголφ будем в радианах. Чтобы знать положение тела в любой момент времени, надо знать зависимость углаφ от времениt , т.е.

.

Это уравнение выражает закон вращательного движения твердого тела вокруг неподвижной оси.

Основными кинематическими характеристиками вращательного движения твердого тела являются его угловая скорость ω и угловое ускорениеε.

9.2.1. Угловая скорость и угловое ускорение тела

Величина, характеризующая быстроту изменения угла поворота φ с течением времени, называется угловой скоростью.

Если за промежуток времени
тело совершает поворот на угол
, то численно средней угловой скоростью тела за этот промежуток времени будет
. В пределе при
получим

Таким образом, числовое значение угловой скорости тела в данный момент времени равно первой производной от угла поворота по времени.

Правило знаков: когда вращение происходит против хода часовой стрелки, ω> 0, а когда по ходу часовой стрелки, тоω< 0.

или, так как радиан – величина безразмерная,
.

В теоретических выкладках удобнее пользоваться вектором угловой скорости , модуль которого равени который направлен вдоль оси вращения тела в ту сторону, откуда вращение видно против хода часовой стрелки. Этот вектор сразу определяет и модуль угловой скорости, и ось вращения, и направление вращения вокруг этой оси.

Величина, характеризующая быстроту изменения угловой скорости с течением времени, называется угловым ускорением тела.

Если за промежуток времени
приращение угловой скорости равно
, то отношение
, т.е. определяет значение среднего ускорения вращающегося тела за время
.

При стремлении
получаем величину углового ускорения в моментt :

Таким образом, числовое значение углового ускорения тела в данный момент времени равно первой производной от угловой скорости или второй производной от угла поворота тела во времени.

В качестве единицы измерения обычно применяют или, что тоже,
.

Если модуль угловой скорости со временем возрастает, вращение тела называется ускоренным , а если убывает, -замедленным. Когда величиныω иε имеют одинаковые знаки, то вращение будет ускоренным, когда разные – замедленным.По аналогии с угловой скоростью угловое ускорение также можно изобразить в виде вектора, направленного вдоль оси вращения. При этом

.

Если тело вращается ускоренно направление совпадает с, и противоположнопри замедленном вращении.

Если угловая скорость тела остается во время движения постоянной (ω= const ), то вращение тела называетсяравномерным .

Из
имеем
. Отсюда, считая, что в начальный момент времени
угол
, и беря интегралы слева отдо, а справа от 0 доt , получим окончательно

.

При равномерном вращении, когда =0,
и
.

Скорость равномерного вращения часто определяют числом оборотов в минуту, обозначая эту величину через n об/мин. Найдем зависимость междуn об/мин иω 1/с. При одном обороте тело повернется на 2π, а приn оборотах на 2π n ; этот поворот делается за 1 мин, т.е.t = 1мин=60с. Из этого следует, что

.

Если угловое ускорение тела во все время движения остается постоянным (ε= const ), то вращение называетсяравнопеременным .

В начальный момент времени t =0 угол
, а угловая скорость
(- начальная угловая скорость).
;

. Интегрируя левую часть отдо, а правую от 0 доt , найдем

Угловая скорость ω этого вращения
. Если ω и ε имеют одинаковые знаки, вращение будетравноускоренным , а если разные –равнозамедленным.

Это движение, при котором все точки тела движутся по окружностям, центры которых лежат на оси вращения.

Положение тела задается двугранным углом (углом поворота).

 =  (t) - уравнение движения.

Кинематические характеристики те­ла:

- угловая скорость, с -1 ;

- угловое ускорение, с -2 .

Величины  и  можно представить в виде векторов
, расположенных на оси вращения, направление вектора таково, что с его конца враще­ние тела видно происходящим против часовой стрелки. Направление совпадает с , если >о.

Положение точки тела: M 0 M 1 = S = h.

Скорость точки
; при этом
.

откуда
;
;
.

Ускорение точки тела ,
‑ вращательное ускорение (в кинематике точки – касательное ‑):
- осестремительное ускорение (в кинематике точки - нор­мальное -).

Модули:
;
;

.

Равномерное и равнопеременное вращение

1. Равномерное:  = const,
;
;
- уравнение движения.

2. Равнопеременное:  = const,
;
;
;
;
- уравнение движения.

2). Механический привод состоит из шкива 1, ремня 2 и ступенчатых колес 3 и 4. Найти скорость рейки 5, а также ускорение точкиM в момент времени t 1 = 1с. Если угловая ско­рость шкива равна  1 = 0,2t , с -1 ; R 1 = 15; R 3 = 40; r 3 = 5; R 4 = 20; r 4 = 8 (в сантиметрах).

Скорость рейки

;

;
;
.

Откуда
;
;
, с -1 .

Из (1) и (2) получим , см.

Ускорение точки M .

, с -2 при t 1 = 1 с; a = 34,84 см/с 2 .

3.3 Плоскопараллельное (плоское) движение твердого тела

Это движение, при котором все точки тела движутся в плоскостях, параллельных некоторой неподвижной пло­скости.

Все точки тела на любой прямой, перпендикулярной неподвижной пло­скости, движутся одинаково. Поэтому анализ плоского движения тела сво­дится к исследованию движения пло­ской фигуры (сечение S) в ее плоскости (xy).

Это движение можно представить как совокупность поступательного движения вместе с некоторой произвольно выбранной точкой а, называемой полюсом , и вращательного движе­ния вокруг полюса.

Уравнения движения плоской фигуры

x а = x a (t); у а = у а; j = j(t)

Кинематические характеристи­ ки плоской фигуры:

- скорость и ускорение по­люса; w, e - угловая скорость и угловое ускорение (не зависят от выбора полюса).

Уравнения движения любой точки плоской фигуры (B) можно получить, проектируя векторное равенство
на осиx и у

x 1 B , y 1 B - координаты точки в системе координат, свя­занной с фигурой.

Определение скоростей точек

1). Аналитический способ .

Зная уравнения движения x n = x n (t); y n = y n (t), находим
;
;
.

2). Теорема о распределении скоростей.

Дифференцируя равенство
, получим
,

- скорость точки B при вращении пло­ской фигуры вокруг полюса A;
;

Формула распределения скоро­стей точек плоской фигуры
.

Скорость точкиM колеса, катящегося без скольжения

;
.

3). Теорема о проекциях ско­ростей.

Проекции скоростей двух то­чек тела на ось, проходящую че­рез эти точки, равны. Проектируя равенство
на осьx, имеем

Пример

Определить скорость натекания воды v Н на руль корабля, если извест­ны (скорость центра тяжести суд­на),b и b K (углы дрейфа).

Решение: .

4). Мгновенный центр скоростей (МЦС).

Скорости точек при плоском движении тела можно определять по формулам вращательного движения, используя понятие МЦС.

МЦС - точка, связанная с плоской фигурой, скорость которой в данный момент времени равна нулю (v p = 0).

В общем случае МЦС - точка пере­сечения перпендикуляров к направле­ниям скоростей двух точек фигуры.

Принимая точку P за полюс, имеем для произвольной точки

, тогда

Откуда
- угловая скорость фигуры и
,т.е. скорости точек плоской фигуры пропор­циональны их расстояниям до МЦС.

Возможные случаи нахождения МЦС

Качение без скольжения


МЦС - в бес­конечности

Случай б соответствует мгновенно поступательному распределению скоростей.

1). Для заданного положения механизма найтиv B , v C ,v D , w 1 , w 2 , w 3 , если в данный момент v A = 20 см/с; BC = CD = 40 см; OC = 25 см; R = 20 см.

Решение МЦС катка 1 - точка P 1:

с -1 ;
см/с.

МЦС звена 2 - точка P 2 пересечения перпендикуляров к на­правлениям скоростей точек B и C:

с -1 ;
см/с;
см/с;
с -1 .

2). Груз Q поднимается с помощью ступенчатого бара­бана 1, угловая скорость которого w 1 = 1 с -1 ; R 1 = 3r 1 = 15 см; AE || BD. Найти скорость v C оси подвижного блока 2.

Находим скорости точек A и B:

v A = v E = w 1* R 1 = 15 см/с; v B = v D = w 1* r 1 = 5 см/с.

MЦС блока 2 - точка P. Тогда
, откуда
;
;
см/с.

Рис. 6.4

Такое движение тела, при котором какие- нибудь две его точки и В на рис. 6.4) остаются неподвижными, называют вращением вокруг неподвижной оси.

Можно показать, что в этом случае неподвижной остаётся любая точка тела, лежащая на прямой, соединяющей точки Aw В.

Ось, проходящую через эти точки, называют осью вращения тела; её положительное направление выбирается произвольно (рис. 6.4).

Любая точка М тела, не лежащая на оси вращения, описывает окружность, центр которой расположен на оси вращения (рис. 6.4).

Положение тела с неподвижной осью вращения z (рис. 6.5) можно описать при помощи всего лишь одного скалярного параметра - угла поворота (р . Это угол между двумя плоскостями проведенными через ось вращения: неподвижной плоскостью N и подвижной - Р, жестко связанной с телом (рис. 6.5). За положительное примем направление отсчета угла противоположное движению часовой стрелки, если смотреть с конца оси z. (указано дуговой стрелкой на рис. 6.5). Единица измерения угла в системе СИ - 1 радиан « 57,3°. Функциональная зависимость угла поворота от времени

полностью определяет вращательное движение тела вокруг неподвижной оси. Поэтому равенство (6.3) называют уравнением вращения твердого тела вокруг неподвижной оси.

Быстроту вращения тела характеризует угловая скорость со тела, которая определяется как производная угла поворота по времени

и имеет размерность рад/с (или с"").

Второй кинематической характеристикой вращательного движения является угловое ускорение - производная угловой скорости тела:

Размерность углового ускорения - рад/с 2 (или с ~ 2).

Замечание. Символами со и? в этой лекции обозначаются алгебраические значения угловой скорости и углового ускорения. Их знаки указывают направление вращения и его характер (ускоренное или замедленное). Например, если со = ф > 0 , то угол со временем увеличивается и, следовательно, тело вращается в направлении отсчета (р.

Скорость и ускорение каждой точки вращающегося тела нетрудно связать с его угловой скоростью и угловым ускорением. Рассмотрим движение произвольной точки М тела (рис. 6.6).

Поскольку её траектория - окружность, то дуговая координата.9 точки М после поворота тела на угол будет

где h - расстояние от точки М до оси вращения (рис. 6.6).

Дифференцируя по времени обе части этого равенства, получим с учетом (5.14) и (6.4):

где г г - проекция скорости точки на касательную г, направленную в сторону отсчета дуги.v и угла

Величина нормального ускорения точки М согласно (5.20) и (6.6) будет

а проекция её касательного ускорения на касательную г согласно (5.19) и (6.5)

Модуль полного ускорения точки М

Направления векторов v, а, а„ , а, для случая, когда ф> 0 и ф > 0, показаны на рис. 6.7.

Пример 1. Механизм передачи состоит из колес / и 2, которые связаны в точке К так, что при их вращении взаимное проскальзывание отсутствует. Уравнение вращения колеса 1:

положительное направление отсчета угла указано дуговой стрелкой на рис. 6.8.

Известны размеры механизма: Г = 4 см, R 2 = 6 см, г 2 = 2 см.

Найти скорость и ускорение точки М колеса 2 для момента времени /| = 2 с.

Решение. При движении механизма колеса 1 и 2 вращаются вокруг неподвижных осей, проходящих через точки 0 и 0 2 перпендикулярно плоскости рис. 6.8. Находим угловую скорость и угловое ускорение колеса I в момент времени / = 2 с, используя данные выше определения (6.4) и (6.5) этих величин:

Их отрицательные знаки указывают на то, что в момент времени t - 2 с колесо / вращается по ходу часовой стрелки (противоположно направлению отсчета угла ) и это вращение ускоренное. Благодаря отсутствию взаимного проскальзывания колес I и 2 векторы скоростей их точек в месте соприкосновения К должны быть равными. Выразим модуль этой скорости через угловые скорости колес, используя (6.6):

Из последнего равенства выражаем модуль угловой скорости колеса 2 и находим его значение для указанного момента времени 6 = 2 с:

Направление скорости к (рис. 6.9) указывает, что колесо 2 вращается против хода часовой стрелки и, следовательно, оь > 0. Из (6.10) и последнего неравенства видно, что угловые скорости колес отличаются на постоянный отрицательный множитель (- г1г 2): со 2 = г { /г 2). Но тогда и производные этих скоростей - угловые ускорения колес должны отличаются на такой же множитель: е 2 =? ] (-г ] /г 1)=-2- (-4/2) = 4с~ 2 .

Находим величины скорости и ускорения точки М ступенчатого колеса 2 при помощи формул (6.6) - (6.9):

Направления векторов v и, а, а д/ показаны на рис. 6.9.

Абсолютно твердое тело – тело взаимное расположение частей которого во время движения не меняется.

Поступательное движение твёрдого тела - это такое его движение, при котором любая прямая, жёстко связанная с телом, перемещается, оставаясь параллельной своему первоначальному направлению.

При поступательном движении твёрдого тела все его точки движутся одинаково за малое время dt, радиус-вектор этих точек изменяется на одну и ту же величину. Соответственно в каждый момент времени скорости всех его точек одинаковы и равны. Поэтому кинематика рассматриваемого поступательного движения твёрдого тела сводится к изучению движения любого из его точек. Обычно рассматривают движение центра инерции твёрдого тела, свободно двигающегося в пространстве.

Вращательное движение твёрдого тела - это такое движение, при котором все его точки движущиеся по окружностям, центры которых находятся вне пределов тела. Прямая называется осью вращения тела.

Угловая скорость – векторная величина, характеризующая быстроту вращения тела; отношение угла поворота ко времени, за которое этот поворот произошёл; вектор, определяемый первой производной угла поворота тела по времени. Вектор угловой скорости направлен вдоль оси вращения по правилу правого винта. ω=φ/t=2π/T=2πn, где T – период вращения, n – частота вращения. ω=lim Δt → 0 Δφ/Δt=dφ/dt.

Угловое ускорение – вектор, определяемый первой производной угловой скорости по времени. При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. Вторая производная угла поворота по времени. При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном движении вектор ε сонаправлен вектору φ, при замедленном – противонаправлен ему. ε=dω/dt.

Если dω/dt> 0, то εω

Если dω/dt< 0, то ε ↓ω

4. Принцип инерции (первый закон Ньютона). Инерциальные системы отсчета. Принцип относительности.

Первый закон Ньютона (закон инерции) : всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит её изменить это состояние

Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью . Поэтому первый закон Ньютона называют законом инерции.



Первый закон Ньютона утверждает существование инерциальных систем отсчёта.

Инерциальная система отсчёта – это система отсчёта, относительно которой свободная материальная точка неподверженная воздействию других тел, движется равномерно прямолинейно; это такая система, которая либо покоится, либо движется равномерно и прямолинейно относительно какой-то другой инерциальной системы.

Принцип относительности - фундаментальный физический закон, согласно которому любой процесс протекает одинаково в изолированной материальной системе, находящейся в состоянии покоя, и в такой же системе в состоянии равномерного прямолинейного движения. Состояния движения или покоя определяются по отношению к произвольно выбранной инерциальной системе отсчета. Принцип относительности лежит в основе специальной теории относительности Эйнштейна.

5. Преобразования Галилея.

Принцип относительности (Галилея) : никакие опыты (механические, электрические, оптические), проведённые внутри данной инерциальной системы отсчёта, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчёта к другой.

Рассмотрим две системы отсчета: инерциальную систему К (с координатами x,y,z), которую условно будем считать неподвижной и систему К’ (с координатами x’,y’,z’), движущуюся относительно К равномерно и прямолинейно со скоростью U (U = const). Найдем связь между координатами произвольной точки А в обеих системах. r = r’+r0=r’+Ut. (1.)



Уравнение (1.) можно записать в проекциях на оси координат:

y=y’+Uyt; (2.)

z=z’+Uzt; Уравнение (1.) и (2.) носят название преобразований координат Галилея.

Связь между потенциальной энергией и силой

Каждой точке потенциального поля соответствует, с одной стороны, некоторое значение вектора силы , действующей на тело, и, с другой стороны, некоторое значение потенциальной энергии . Следовательно, между силой и потенциальной энергией должна существовать определенная связь.

Для установления этой связи вычислим элементарную работу , совершаемую силами поля при малом перемещении тела, происходящем вдоль произвольно выбранного направления в пространстве, которое обозначим буквой . Эта работа равна

где - проекция силы на направление .

Поскольку в данном случае работа совершается за счет запаса потенциальной энергии , она равна убыли потенциальной энергии на отрезке оси :

Из двух последних выражений получаем

Эта формула определяет проекции вектора силы на координатные оси. Если известны эти проекции, оказывается определенным и сам вектор силы:

в математике вектор ,

где а - скалярная функция х, у, z, называется градиентом этого скаляра обозначается символом . Следовательно сила равна градиенту потенциальной энергии, взятого с обратным знаком