Выгребная яма

Переносным движением точки при сложном движении называется. Сложное движение точки

Переносным движением точки при сложном движении называется. Сложное движение точки

СЛОЖНЫЕ ДВИЖЕНИЯ ТОЧКИ

§ 1. Абсолютное, относительное и переносное движения точки

В ряде случаев приходится рассматривать движение точки по отношению к системе координат О 1 ξηζ, которая, в свою очередь, движется по отношению к другой системе координат Охуz условно принятой в качестве неподвижной. В механике каждую из указан­ных систем координат связывают с некоторым телом. Например, рас­смотрим качение без скольжения колеса вагона по рель­су. С рельсом свяжем неподвижную систему координат Аху, а подвижную систему Oξη свяжем с центром колеса и предположим, что она движется поступательно. Движе­ние точки на ободе колеса является составным или сложным.

Введем следующие определения:

1. Движение точки относительно системы координат Охуz (рис. 53) называется абсолютным.

2. Движение точки относительно подвижной системы координат O 1 ξηζ называется населенным.

3. Переносным движением точки называют движение той точки тела, связанного с подвижной системой координат О 1 ξηζ , относи­тельно неподвижной системы координат, с которой в данный момент совпадает рассматриваемая движущаяся точка.

Таким образом, переносное движение вызвано движением под­вижной системы координат по отношению к неподвижной. В приве­денном примере с колесом переносное движение точки обода колеса обусловлено поступательным движением системы координат О 1 ξηζ по отношению к неподвижной системе координат Аху.

Уравнения абсолютного движения точки получим, выразив коор­динаты точки х, у,z как функции времени:

х=х(t ), у = у(t ), z = z (t ).

Уравнения относительного движения точки имеют вид

ξ = ξ (t ), η = η (t), ζ = ζ (t ).

В параметрической форме уравнения (11.76) выражают уравне­ния абсолютной траектории, а уравнения (11.77) - соответственно уравнения относительной траектории.

Различают также абсолютную, переносную и от­носительную скорость и соответственно абсолютное, переносное и относительное ускорения точки. Абсо­лютную скорость обозначают υ a , относительную - υ r , переносную - υ е Соответственно ускорения обознача­ют: ω а , ω r и ω е .

Основной задачей кинематики сложного движения точки является установление зависимости между скоростями и ускорениями точки в двух системах координат: неподвижной и под­вижной.

Для доказательства теорем о сложении скоростей и ускоре­ний в сложном движении точки введем понятие о локальной или относительной производной.


Теорема о сложении скоростей

Теорема . При сложном (составном) движении точки ее абсолютная скорость υ a равна векторной сумме отно­сительной υ r и переносной υ е скоростей.

Пусть точка М совершает одновременные движения по отношению к неподвижной и подвижной системам координат (рис. 56). Обозначим угловую скорость поворота системы коор­динат Оξηζ через ω . Положение точки М определяется радиусом-вектором r .

Установим соотношение между скоростями точки М по отноше­нию к двум системам координат - неподвижной и подвижной. На основании доказанной в предыдущем параграфе теоремы

Из кинематики точки известно, что первая производная от ра­диуса-вектора движущейся точки по времени выражает скорость этой точки. Поэтому = r = υ а - абсолютная скорость, =υ r - относительная скорость,

а ω xr = υ е - переносная ско­рость точки М. Следовательно,

υ а = υ r + υ е

Формула (11.79) выражает правило параллелограмма скоростей. Модуль абсолютной скорости найдем по теореме косинусов:



В некоторых задачах кинематики требуется определить относи­тельную скорость υ r . Из (11.79) следует

υ r = υ а +(- υ е) .

Таким образом, чтобы построить вектор относительной скорости, нужно геометрически сложить абсолютную скорость с век­тором, равным по абсолютной величине, но противоположно направ­ленным переносной скорости.

Движется относительно какой-либо системы отсчёта, а та, в свою очередь, движется относительно другой системы отсчёта. При этом возникает вопрос о связи движений точки в этих двух СО.

Обычно выбирают одну из СО за базовую («абсолютную»), другую называют «подвижной» и вводят следующие термины:

  • абсолютное движение - это движение точки/тела в базовой СО.
  • относительное движение - это движение точки/тела относительно подвижной системы отсчёта.
  • переносное движение - это движение второй СО относительно первой.

Также вводятся понятия соответствующих скоростей и ускорений . Например, переносная скорость - это скорость точки, обусловленная движением подвижной системы отсчёта относительно абсолютной. Другими словами, это скорость точки подвижной системы отсчёта, в данный момент времени совпадающей с материальной точкой.

Оказывается, что при получении связи ускорений в разных системах отсчёта возникает необходимость ввести ещё одно ускорение, обусловленное вращением подвижной системы отсчёта:

В дальнейшем рассмотрении, базовая СО предполагается инерциальной , а на подвижную никаких ограничений не накладывается.

Классическая механика

Кинематика сложного движения точки

Скорость

.

Основные задачи кинематики сложного движения заключаются в установлении зависимостей между кинематическими характеристиками абсолютного и относительного движений точки (или тела) и характеристиками движения подвижной системы отсчета, то есть переносного движения. Для точки эти зависимости являются следующими: абсолютная скорость точки равна геометрической сумме относительной и переносной скоростей, то есть

.

Ускорение

Связь ускорений можно найти путём дифференцирования связи для скоростей, не забывая, что координатные векторы подвижной системы координат также могут зависеть от времени.

Абсолютное ускорение точки равно геометрической сумме трёх ускорений - относительного, переносного и кориолисова , то есть

.

Кинематика сложного движения тела

Для твёрдого тела, когда все составные (то есть относительные и переносные) движения являются поступательными , абсолютное движение также является поступательным со скоростью, равной геометрической сумме скоростей составных движений. Если составные движения тела являются вращательными вокруг осей, пересекающихся в одной точке (как, например, у гироскопа), то результирующее движение также является вращательным вокруг этой точки с мгновенной угловой скоростью, равной геометрической сумме угловых скоростей составных движений. Если же составными движениями тела являются и поступательные, и вращательные, то результирующее движение в общем случае будет слагаться из серии мгновенных винтовых движений.

Рассчитать взаимосвязь скоростей разных точек твёрдого тела в разных системах отсчёта можно с помощью комбинирования формулы сложения скоростей и формулы Эйлера для связи скоростей точек твёрдого тела . Связь ускорений находится простым дифференцированием полученного векторного равенства по времени.

Динамика сложного движения точки

При рассмотрении движения в неинерциальной СО нарушаются первые 2 закона Ньютона. Чтобы обеспечить формальное их выполнение, обычно вводятся дополнительные, фиктивные (не существующие на самом деле), силы инерции: центробежная сила и сила Кориолиса . Выражения для этих сил получаются из связи ускорений (предыдущий раздел).

Релятивистская механика

Скорость

При скоростях, близких к скорости света, преобразования Галилея не являются точно инвариантными и классическая формула сложения скоростей перестаёт выполняться. Вместо этого, инвариантными являются преобразования Лоренца, а связь скоростей в двух инерциальных СО получается следующей:

в предположении, что скорость направлена вдоль оси х системы S. Легко убедиться, что в пределе нерелятивистских скоростей преобразования Лоренца сводятся к преобразованиям Галилея.

Литература

  • Н. Г. Четаев . «Теоретическая механика». М.: Наука. 1987. 368 с.
Общая постановка задачи об относительном движении такова: движение точки определяется наблюдателями, связанными с двумя различными координатными системами (системами отсчета), причем эти системы движутся заданным образом друг по отношению к другу. Каждый наблюдатель определяет кинематические элементы движе­ния: траекторию, скорость и ускорение в своей системе отсчета. Ставится задача: зная движение одной системы отсчета по отно­шению к другой, найти связь между кинематическими элементами движения точки по отношению к каждой системе в отдельности. Предположим, что движение точки М в пространстве рассма­тривается в двух движущихся друг по отношению к другу системах координат: Oxyz , и (рис.41). В зависимости от содержания стоящей перед нами задачи одну из этих систем Oxyz примем за основную и назовем абсолютной системой и все кине­матические элементы его абсолютными. Другую систему назовем относительной и соответственно движение по отношению к этой системе, а также его кинематические элементы относитель­ными. Термины «абсолютный» и «относительный» имеют здесь ус­ловное значение; при рассмотрении движений может оказаться целе­сообразным то одну, то другую систему принимать за абсолютную. Элементы абсолютного движения будем обозначать подстрочным индексом «а », а относительного - индексом «r ».

Введем понятие переносного движения, элементы которого будем обозначать подстрочным индексом «е ». Переносным движением точки будем называть движение (по отношению к абсолютной системе) того пункта относительной системы, через который в рассматриваемый момент времени проходит движущаяся точка. Понятие переносного движения нуждается в пояснении. Необхо­димо четко различать точку, абсолютное и относительное движение которой рассматривается, от той, неизменно связанной с относи­тельной системой точки, через которую в данный момент проходит движущаяся точка. Обычно та и другая точка обо­значены одной буквой М , так как рисунок не передает движения; на самом деле это две различные точки, движущиеся друг по от­ношению к другу.

Остановимся на двух иллюстрациях понятия переносного дви­жения. Если человек идет по движущейся платформе, то можно рассматривать, во-первых, «абсолютное» движение человека по от­ношению к земле, во-вторых, «относительное» его движение по платформе. Переносным движением при этом будет являться движе­ние по отношению к земле того места платформы, по которому проходит в данный момент человек.

    В механике, движение подвижной системы отсчёта по отношению к системе отсчёта, принятой за основную (условно считаемую неподвижной). (см. ОТНОСИТЕЛЬНОЕ ДВИЖЕНИЕ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор… … Физическая энциклопедия

    ПЕРЕНОСНОЕ ДВИЖЕНИЕ - перемещение подвижной системы отсчёта (напр. движение вагона с передвигающимся в нём человеком), по отношению к которой точка, тело (человек) совершает относительное (см.) … Большая политехническая энциклопедия

    переносное движение - Движение подвижной системы отсчета по отношению к основной системе отсчета. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики теоретическая механика … Справочник технического переводчика

    переносное движение - 3.29 переносное движение: Совместное движение сооружения и основания во время землетрясения как единого недеформируемого целого с ускорениями (скоростями или смещениями) основания. Источник: СП 14.13330.2014: Строительство в сейсмических районах … Словарь-справочник терминов нормативно-технической документации

    В физике, при рассмотрении нескольких систем отсчёта (СО) возникает понятие сложного движения когда материальная точка движется относительно какой либо системы отсчёта, а та, в свою очередь, движется относительно другой системы отсчёта. При этом … Википедия

    Движение подвижной системы отсчёта по отношению к системе отсчёта, принятой за основную (условно считаемую неподвижной). * * * ПЕРЕНОСНОЕ ДВИЖЕНИЕ ПЕРЕНОСНОЕ ДВИЖЕНИЕ, перемещение подвижной системы отсчета, по отношению к которой точка или тело… … Энциклопедический словарь

    переносное движение - nešamasis judėjimas statusas T sritis fizika atitikmenys: angl. bulk motion vok. Führungsbewegung, f rus. переносное движение, n pranc. mouvement d’entraînement, m; mouvement translatif, m … Fizikos terminų žodynas