Душевые кабины

Общая характеристика элементов VIII группы побочной подгруппы Периодической системы Д. И

Общая характеристика элементов VIII группы побочной подгруппы Периодической системы Д. И

Элементы, входящие в VII группу периодической системы, делятся на две подгруппы: главную - подгруппу галогенов - и побочную - подгруппу марганца. В эту же группу помещают и водород, хотя его атом имеет на внешнем, валентном, уровне единственный электрон и его следовало бы поместить в I группу. Однако водород имеет очень мало общего как с элементами основой подгруппы - щелочными металлами, так и с элементами побочной подгруппы - медью, серебром и золотом. В то же время он, как и галогены, присоединяя в реакциях с активными металлами электрон, образует гидриды, имеющие некоторое сходство с галогенидами.

К подгруппе галогенов относятся фтор, хлор, бром, иод и астат. Первые четыре элемента встречаются в природе, последний получен искусственно и поэтому изучен значительно меньше остальных галогенов. Слово галоген означает солеобразующий. Это название элементы подгруппы получили благодаря легкости, с которой они реагируют со многими металлами, образуя соли.Все галогены имеют структуру внешней электронной оболочки s 2 p 5 . Поэтому они легко принимают электрон, образуя устойчивую благородногазовую электронную оболочку (s 2 р 6). Наименьший радиус атома в подгруппе - у фтора, у остальных он увеличивается в ряду F < Cl < Br < I < Аt и составляет соответственно 133; 181; 196; 220 и 270 пм. В таком же порядке уменьшается сродство атомов элементов к электрону. Галогены - очень активные элементы. Они могут отнимать, электроны не только у атомов, которые их легко отдают, но и у ионов и даже вытеснять другие галогены, менее активные, из их соединений. Например, фтор вытесняет хлор из хлоридов, хлор - бром из бромидов, а бром - иод из иодидов. Из всех галогенов только фтор, находящийся во II периоде, не имеет незаполненного d-уровня. По этой причине он не может иметь больше одного неспаренного электрона и проявляет валентность только -1. В атомах других галогенов d-уровень не заполнен, что дает им возможность иметь различное количество неспаренных электронов и проявлять валентность -1, +1, +3, +5 и +7, наблюдающуюся в кислородных соединениях хлора, брома и иода К подгруппе марганца принадлежат марганец, технеций и рений. В отличии от галогенов элементы подгруппы марганца имеют на внешнем электронном уровне всего два электрона и поэтому не проявляют способности присоединять электроны, образуя отрицательно заряженные ионы.Марганец распространен в природе и широко используется в промышленности.Технеций радиоактивен, в природе не встречаемся, а получен искусственно (впервые - Э. Сегре и К.Перрье, 1937}. Этот элемент образуется вследствие радиоактивного распада урана. Рений относится к числу рассеянных элементов. Он не образует самостоятельных минералов, а встречается в качестве спутника некоторых минералов, особенно молибденовых. Он был открыт В. и И. Ноддак в 1925 г. Сплавы, имеющие небольшие добавки рения, обладают повышенной устойчивостью против коррозии. Добавка рения к и ее сплавам увеличивает их механическую прочность. Это свойство рения позволяет применять его вместо благородного металла иридия. Платино-платинорениевые термопары работают лучше платино-платиноиридиевых, но их нельзя использовать при очень высоких температурах, так как образуется летучее соединение Re 2 O 7 .

Характерной особенностью неметаллов является большее (по сравнению с металлами) число электронов на внешнем энергетическом уровне их атомов. Это определяет их большую способность к присоединению дополнительных электронов и проявлению более высокой окислительной активности, чем у металлов. Особенно сильные окислительные свойства, т. е. способность присоединять электроны, проявляют неметаллы, находящиеся во 2-ом и 3-м периодах VI-VII групп. Если сравнить расположение электронов по орбиталям в атомах фтора, хлора и других галогенов, то можно судить и об их отличительных свойствах. У атома фтора свободных орбиталей нет. Поэтому атомы фтора могут проявить только валентность I и степень окисления ― 1. Самым сильным окислителем является фтор. В атомах других галогенов, например в атоме хлора, на том же энергетическом уровне имеются свободные d-орбитали. Благодаря этому распаривание электронов может произойти тремя разными путями. В первом случае хлор может проявить степень окисления +3 и образовать хлористую кислоту HClO2, которой соответствуют соли ― хлориты, например хлорит калия KClO2. Во втором случае хлор может образовать соединения, в которых степень окисления хлора +5. К таким соединениям относятсяхлорноватая кислота HClO3 и ее соли ― хлораты, например хлорат калия КClO3 (бертолетова соль). В третьем случае хлор проявляет степень окисления +7, например в хлорной кислоте HClO4 и в ее солях, ― перхлоратах (в перхлорате калия КClO4).

Частные аналитические реакции ионов Mn 2+

1.5.5. Окисление висмутатом натрия NaBiO 3 , протекает по уравнению:

2Mn(NO 3) 2 + 5NaBiO 3 + 16HNO 3 = 2HMnO 4 + 5Bi(NO 3) 3 + 5NaNO 3 + 7H 2 O.

Реакция идет на холоду.Выполнение реакции: к 1-2 каплям раствора соли марганца прибавляют 3-4 капли 6 М раствора HNO 3 и 5-6 капель H 2 O, после чего вносят лопаточкой немного порошка NaBiO 3 . перемешав содержимое пробирки, дают постоять 1-2 минуты, центрифугируют для отделения избытка висмутата натрия. В присутствии Mn 2+ раствор становится фиолетовым в результате образования марганцевой кислоты, которая является одним из наиболее сильных окислителей.

1.5.6. Окисление двуокисью свинца PbО 2 в азотнокислой среде при нагревании:

2Mn(NO 3) 2 + 5РbО 2 + 6HNO 3 → 2HMnO 4 + 5Pb(NO 3) 2 + 2Н 2 О.

Выполнение реакции: Берут немного порошка PbO 2 и помещают в пробирку, туда же добавляют 4-5 капель 6 M HNO 3 , нагревают при перемешивании. Появление фиолетовой окраски свидетельствует о наличии Mn 2+ .

1.5.7. Важное значение в анализе имеют реакции Mn 2+ c карбонатами щелочных металлов, гидрофосфатом натрия, реакции окисления персульфатом аммония, окисление бензидина соединениями Mn 4+ , восстановление AgCl до металлического серебра ионами Mn 2+ .

88.Элементы VIII B группы. Типичные свойства важнейших соединений. Биологическая роль. Аналитические реакции на ионы Fe 3+ , Fe 2+ .

Подгру́ппа желе́за - химические элементы 8-й группы периодической таблицы химических элементов (по устаревшей классификации - элементы побочной подгруппы VIII группы) . В группу входят железо Fe, рутений Ru и осмий Os. На основании электронной конфигурации атома к этой же группе относится и искусственно синтезированный элемент хассий Hs, который был открыт в 1984 в Центре исследования тяжёлых ионов (нем. Gesellschaft für Schwerionenforschung, GSI ), Дармштадт, Германия в результате бомбардировки свинцовой (208 Pb) мишени пучком ионов железа-58 из ускорителя UNILAC. В результате эксперимента были синтезированы 3 ядра 265 Hs, которые были надёжно идентифицированы по параметрам цепочки α-распадов . Одновременно и независимо эта же реакция исследовалась в ОИЯИ (Дубна,Россия), где по наблюдению 3 событий α-распада ядра 253 Es также был сделан вывод о синтезе в этой реакции ядра 265 Hs, подверженного α-распаду . Все элементы группы 8 содержат 8 электронов на своих валентных оболочках. Два элемента группы - рутений и осмий - относятся к семейству платиновых металлов. Как и в других группах, члены 8 группы элементов проявляют закономерностиэлектронной конфигурации, особенно внешних оболочек, хотя, как ни странно, рутений не следует этому тренду. Тем не менее, у элементов этой группы тоже проявляется сходство физических свойств и химического поведения: В чистом виде в природе железо редко встречается, чаще всего оно встречается в составе железо-никелевых метеоритов. Распространённость железа в земной коре - 4,65 % (4-е место после кислорода, кремния и алюминия ). Считается также, что железо составляет бо́льшую часть земного ядра.

Рутений является единственным платиновым металлом, который обнаруживается в составе живых организмов. (По некоторым данным - ещё и платина). Концентрируется в основном в мышечной ткани. Высший оксид рутения крайне ядовит и, будучи сильным окислителем, может вызвать возгорание пожароопасных веществ.

Аналитические реакции

Гексацианоферрат(III) калия K 3 с катионом Fe 2+ образует синий осадок «турнбулевой сини»:

3FeSO 4 + 2K 3 → Fe 3 2 ↓+ 3K 2 SO 4 ,

3Fe 2+ + 2Fe(CN) 6 3– → Fe 3 2 ↓.

Осадок не растворяется в кислотах, но разлагается щелочами с образованием Fe(OH) 2 . При избытке реактива осадок приобретает зеленый оттенок. Реакции мешают ионы Fe 3+ , которые при большой концентрации дают с реактивом бурое окрашивание раствора, и ионы Мn 2+ и Bi 3+ , дающие с реактивом слабоокрашенные осадки, растворимые в кислотах. Выполнение реакций. В пробирку поместить 1–2 капли раствора FeSO 4 и прибавить 1 каплю реактива. Полученный осадок разделить на две части, к первой прибавить 1-2 капли 2 М раствора НС1, ко второй– 1-2 капли 2 М раствора щелочи. Условия проведения реакции – с разбавленными растворами в кислой среде, рН = 3.

1.5.2.> Окисление Fe 2+ до Fe 3+ . Ион Fe 2+ представляет собой довольно сильный восстановитель и способен окисляться при действии ряда окислителей, например, H 2 O 2 , KMnO 4 , K 2 Cr 2 O 7 в кислой среде и др.

2Fe 2+ + 4OH – + H 2 O 2 → 2Fe(OH) 3 ↓.

При проведении систематического анализа Fe 2+ следует открыть в предварительных испытаниях, т.к. в процессе разделения групп Fe 2+ может окислиться до Fe 3+ .

Частные аналитические реакции ионов Fe 3+

1.5.3. Гексацианоферрат(II) калия K 4 с катионами Fe 3+ образует темно-синий осадок «берлинской лазури»:

4Fe 3+ + 3Fe(CN) 6 4– → Fe 4 3 ↓.

Осадок практически не растворяется в кислотах, но разлагается щелочами с образованием Fe(OH) 3 . В избытке реактива осадок заметно растворяется. Выполнение реакции. К 1–2 каплям раствора FeCl 3 прибавить 1 каплю реактива. Полученный осадок разделить на две части. К одной части прибавить 2–3 капли 2 М раствора НС1, к другой –1-2 капли 2 М раствора NaOH, перемешать.

1.5.4. Тиоцианат (роданид) калия KNCS с ионами Fe 3+ образует комплекс кроваво-красного цвета. В зависимости от концентрации тиоцианата могут образовываться комплексы различного состава:

Fe 3+ + NCS – ↔ Fe(NCS) 2+ ,

Fe 3+ + 2NCS – ↔ Fe(NCS) 2+ ,

и т.д. до Fe 3+ + 6NCS – ↔ Fe(NCS) 6 3– ,

Реакция обратима, поэтому реактив берется в избытке. Определению мешают ионы, образующие с Fe 3+ устойчивые комплексы, например, фторид-ионы, соли фосфорной, щавелевой и лимонной кислот.

89.Элементы I B группы. Типичные свойства важнейших соединений, биологическая роль. Бактерицидное действие ионов Ag + и Сu 2+ . Аналитические реакции на ионы серебра и меди.

n = 4 Cu ns1(n-1)d10, внешний уровень - 1 ē,

предвнешний - 18 ē

n = 5 Ag Неспаренных ē - один (провал, проскок), но

n = 6 Au 18 - электронный слой, устойчивый у подгруппы

цинка, здесь еще не вполне стабилизировался и

способен к потере ē, поэтому СО возможны

Только d-элементы IB группы образуют соединения, в которых СО превышает N группы, причем она более устойчива для Cu2+, Ag+, Au+3

Хаpактеpное свойство двухзаpядных ионов меди - их способность соединяться с молекулами аммиака с обpазованием комплексных ионов.Медь пpинадлежит к числу микpоэлементов. Такое название получили Fe, Cu, Mn, Mo, B, Zn, Co в связи с тем, что малые количества их необходимы для ноpмальной жизнедеятельности pастений. Микpоэлементы повышают активность феpментов, способствуют синтезу сахаpа, кpахмала, белков, нуклеиновых кислот, витаминов и феpментов. Сеpебpо - малоактивный металл. В атмосфеpе воздуха оно не окисляется ни пpи комнатных темпеpатуpах, ни пpи нагpевании. Часто наблюдаемое почеpнение сеpебpяных пpедметов - pезультат обpазования на их повеpхности чёpного сульфида сеpебpа - AgS 2 . Это пpоисходит под влиянием содеpжащегося в воздухе сеpоводоpода, а также пpи сопpикосновении сеpебpяных пpедметов с пищевыми пpодуктами, содеpжащими соединения сеpы.4Ag + 2H 2 S + O 2 -> 2Ag 2 S +2H 2 OВ pяду напpяжения сеpебpо pасположено значительно дальше водоpода. Поэтому соляная и pазбавленная сеpная кислоты на него не действуют. Раствоpяют серебpо обычно в азотной кислоте, котоpая взаимодействует с ним согласно уpавнению:Ag + 2HNO 3 -> AgNO 3 + NO 2 ­+ H 2 OСеpебpо обpазует один pяд солей, pаствоpы котоpых содеpжат бесцветные катионы Ag + .Пpи действии щелочей на pаствоpы солей сеpебpа можно ожидать получения AgOH, но вместо него выпадает буpый осадок оксида сеpебpа(I):2AgNO 3 + 2NaOH -> Ag 2 O + 2NaNO 3 + H 2 OКpоме оксида сеpебpа(I) известны оксиды AgO и Ag 2 O 3 .Hитpат сеpебpа (ляпис) - AgNO 3 - обpазует бесцветные пpозpачные кpисталлы, хоpошо pаствоpимые в воде. Пpименяется в пpоизводстве фотоматеpиалов, пpи изготовлении зеpкал, в гальванотехнике, в медицине.Подобно меди, сеpебpо обладает склонностью к обpазованию комплексных соединений.Многие неpаствоpимые в воде соединения сеpебpа (напpимеp: оксид сеpебpа(I) - Ag 2 O и хлоpид сеpебpа- AgCl), легко pаствоpяются в водном pаствоpе аммиака.Комплексные цианистые соединения сеpебpа пpименяются для гальванического сеpебpения, так как пpи электpолизе pаствоpов этих солей на повеpхности изделий осаждается плотный слой мелкокpисталлического сеpебpа.Все соединения сеpебpа легко восстанавливаются с выделением металлического сеpебpа. Если к аммиачному pаствоpу оксида сеpебpа(I), находящемуся в стеклянной посуде, пpибавить в качестве восстановителя немного глюкозы или фоpмалина, то металлическое сеpебpо выделяется в виде плотного блестящего зеpкального слоя на повеpхности стекла. Ионы сеpебpа подавляют pазвитие бактеpий и уже в очень низкой концентpации, сеpилизуют питьевую воду. В медицине для дезинфекции слизистых оболочек пpименяются стабилизиpованные специальными добавками коллоидные pаствоpы сеpебpа (пpотаpгол, коллаpгол и дp.Серебро (наряду с другими тяжелыми металлами, такими как медь, олово, ртуть) способно в малых концентрациях оказывать бактерицидное действие (так называемый, олигодинамический эффект). Выраженный бактерицидный эффект (способность гарантированно убивать определенные бактерии) наблюдается при концентрациях ионов серебра свыше 0,15 мг/л. В количестве 0,05 - 0,1 мг/л ионы серебра обладают только бактериостатическим действием (способностью сдерживать рост и размножение бактерий). Хотя скорость обеззараживания серебром не так высока, как озоном или УФ лучами, ионы серебра могут долгое время оставаться в воде, обеспечивая ее длительную дезинфекцию. Механизм действия серебра еще до конца не изучен. Как полагают ученые, обеззараживающий эффект наблюдается, когда положительно заряженные ионы серебра, а также меди образуют электростатические связи с отрицательно заряженной поверхностью клеток микроорганизмов. Эти электростатические связи создают напряжение, которое может нарушить проницаемость клеток и снизить проникновение в них жизненно-необходимого количества питательных веществ. Проникая же внутрь клеток, ионы серебра, а также меди взаимодействуют с аминокислотами, которые входят в состав протеинов и используются в процессе фотосинтеза. В результате чего, процесс превращения солнечного излучения в пищу и энергию микроорганизмов нарушается, что и приводит к их гибели.В результате многочисленных исследований подтверждено эффективное бактерицидное воздействие ионов серебра на большинство патогенных микроорганизмов, а также и на вирусы. Однако спорообразующие разновидности микроорганизмов практически нечувствительны к серебру.Обогащение воды ионами серебра может осуществляться несколькими способами: непосредственным контактом воды с поверхностью серебра, обработкой воды раствором солей серебра и электролитическим методом.

Качественная реакция на ионы меди
Гексацианоферрат (2) калия K 4 образует с раствором соли меди красно-бурый осадок Cu 2 , нерастворимый в разбавленных кислотах, но растворимый в растворе аммиака.
Cu 2+ + 4+ ® Cu 2 ¯К 3 каплям раствора CuSO 4 прибавить 2 капли раствора соли K 4 . Hаблюдать выпадение красного осадка. Осадок отцентрифугировать и прибавить к нему 3–5 капель раствора аммиака.

Реакции обнаружения ионов меди Сu2+

Действие группового реагента H2S. Сероводород образует в подкисленных растворах солей меди черный осадок сульфида меди (II)CuS:CuSO4 + H2S = CuS + H2SO4,Cu2+ + H2S = CuS + 2H+.

Действие гидроксида аммония NH4OH. Гидроксид аммония NH4OH, взятый в избытке, образует с солями меди комплексный катион тетраамминмеди (II) интенсивно-синего цвета:

CuSO4 + 4NH4OH = SO4 + 4Н2O,

Сu2+ + 4NH4OH = + + 4Н2О.

Реакции обнаружения ионов серебра Ag+

Действие группового реагента НС1. Соляная кислота образует с растворами солей Ag+ практически нерастворимый в воде белый осадок хлорида серебра AgCl:

Ag+ + Cl- = AgCl.

Обнаружение катиона серебра. Соляная кислота и растворы ее солей (т. е. хлорид-ионы Сl-) образуют с растворами солей Ag+ практически нерастворимый в воде белый осадок хлорида серебра AgCl, который хорошо растворяется в избытке раствора NH4OH; при этом образуется растворимая в воде комплексная соль серебра хлорид диамминсеребра. При последующем действии азотной кислоты комплексный ион разрушается и хлорид серебра снова выпадает в осадок (эти свойства солей серебра используются для его обнаружения):

AgNO3 + НСl = AgCl + HNO3,

AgCl + 2NH4OH = Cl + 2Н2О,

Cl + 2HNO3 = AgCl + 2NH4NO3.

90.Элементы II В группы. Типичные свойства важнейших соединений, биологическая роль. Комплексная природа, медь- и цинксодержащих ферментов. Аналитические реакции на ионы Zn 2+ .

Ферментами называют природные белковые катализаторы. Некоторые ферменты имеют чисто белковый состав и не нуждаются для проявления своей активности в каких-либо иных веществах. Однако существует обширная группе ферментов, активность которых проявляется только в присутствии определенных соединений небелковой природы. Эти соединения называются кофакторами. Кофакторами могут быть, например, ионы металлов или органические соединения сложного строения - их обычно называют коферментами. Установлено, что для нормальной работы фермента иногда требуется и кофермент, и ион металла, образующие вместе с молекулой субстрата тройной комплекс. Так металлы входят в состав биологических машин как незаменимая часть. Ионы магния нужны для работы по переносу остатков фосфорной кислоты, для этих же целей нужны и ионы калия; гидролиз белков требует ионов цинка и т. д. Ниже мы разберем эти вопросы детально.Ферменты, как правило, ускоряют однотипные реакции, и лишь немногие из них действуют только на одну определенную и единственную реакцию. К таким ферментам, обладающим абсолютной специфичностью, относится, в частности, уреаза, разлагающая мочевину. Большинство ферментов не столь строги в выборе субстрата. Одна и та же гидролаза, например, способна катализировать гидролитическое разложение нескольких различных сложных эфиров.По мере того как в биологических исследованиях их химическая сторона углублялась и химики все чаще становились помощниками и сотрудниками биологов, число вновь открываемых ферментов неуклонно возрастало; вскоре их пришлось считать уже не десятками, а сотнями. Такое расширение круга биологических катализаторов вызвало некоторые трудности в классификации и номенклатуре ферментов.Раньше ферменты называли по тому субстрату, на который они действовали, с прибавлением окончания "аза". Так, если фермент действует на сахар мальтозу, то его называли "мальтаза", если на лактозу - "лактаза" и т. д. В настоящее время принята номенклатура, в которой название отражает также и химическую функцию фермента. Частица "аза" сохранена для простых ферментов. Если же в реакции участвует комплекс ферментов, применяют термин "система".

Ферменты делят на шесть классов:

Оксидоредуктазы. Это ферменты, катализирующие окислительно-восстановительные реакции. Примером оксидоредуктаз могут служить пируватдегидрогеназа, отнимающая водород от пировиноградной кислоты, каталаза, разлагающая пероксид водорода, и др.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ХИМИЯ ЭЛЕМЕНТОВ VIII ГРУППЫ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ

Учебное пособие

Издательско-полиграфический центр Воронежского государственного университета

Утверждено научно-методическим советом химического факультета 12 декабря 2012 г., протокол № 9

Составители: И.Я. Миттова, Е.В. Томина, Б.В. Сладкопевцев, Д.О. Солодухин

Рецензент д-р хим. наук, профессор В.Н. Семенов

Учебное пособие подготовлено на кафедре материаловедения и индустрии наносистем химического факультета Воронежского государственного университета.

Для направлений: 020300 – Химия, физика и механика материалов, 020100 – Химия

ПРЕДИСЛОВИЕ

Данное учебное пособие является продолжением первых трех частей, в которых были рассмотрены Периодический закон как основа неорганической химии, химия элементов I–VI групп Периодической системы. В четвертой части рассматривается химия элементов VIII группы Периодической системы химических элементов Д.И. Менделеева.

Пособие призвано помочь студенту-первокурснику в изучении дисциплины «Неорганическая химия» и по сути дела является конспектом лекционного курса, где отображены все основные ключевые моменты, которые необходимо учесть при ее изучении.

Являясь продолжением цикла пособий по курсу «Неорганическая химия», данное издание в целом сохраняет структуру и последовательность изложения материала. Описание начинается с общей характеристики простых веществ, их распространенности в природе, способов получения и химических свойств, в отдельных подразделах рассматриваются свойства соединений элементов группы. Особое внимание уделено применению химических элементов и их соединений в качестве разнообразных современных материалов.

Для реализации принципа наглядности в пособии приведено большое количество иллюстративного материала и таблиц, которые позволяют в компактном виде представить обширные объемы материала и отразить основные закономерности в изменении свойств химических элементов и их соединений.

При написании использованы современные литературные источники, список которых приведен в конце пособия. Иллюстративный материал большей частью взят из учебников «Неорганическая химия» (под ред. Ю.Д. Третьякова, М. : Асаdemia, 2004) и «Химия элементов» (Н. Гринвуд, А. Эрншо. М. : БИНОМ. Лаб. знаний, 2008).

Настоящее пособие прежде всего предназначено для студентов первого курса химического факультета, однако оно может быть полезным и студентам старших курсов, в частности магистрам, изучающим дисциплины «Современная неорганическая химия» и «Современные проблемы неорганической химии», для актуализации полученных ранее знаний.

ГЛАВА 1. VIII-A ГРУППА

1.1. Простые вещества

1.1.1. Свойства элементов

Элементы VIII-A группы: гелий 2 Не, неон 10 Ne, аргон 18 Аr, криптон 36 Kr, ксенон 54 Хе и радон 86 Rn – называют благородными газами. Электрон-

ная конфигурация первого представителя группы, гелия – 1s 2 . Атомы остальных благородных газов на внешнем уровне имеют восемь валентных электронов (табл. 1), что отвечает устойчивой электронной конфигурации.

Таблица 1

Свойства элементов VIII-A группы

Свойство

Заряд ядра Z

Электронная конфигу-

4f 14

рация восновном со-

[Не]2s 2р

3s 3p

4 s 4 p

5 s 5 p

5p 6

Атомный радиус, нм

Первая энергия иони-

зации I 1 , кДж/моль

Энергия возбуждения

ns2 np6 →ns2 np5 (n + 1) s1 ,

Электроотрицатель-

Полностью завершенная конфигурация внешнего электронного слоя (в случае гелия и неона) или наличие октета электронов обусловливает высокие значения энергий ионизации атомов благородных газов и, как следствие, их низкую химическую активность. Способность атомов этих элементов вступать в химические реакции возрастает с ростом атомного радиуса вследствие ослабления притяжения валентных электронов к ядру. К настоящему времени получены химические соединения лишь тяжелых благородных газов: криптона, ксенона и радона.

1.1.2. Нахождение в природе, получение

Гелий – второй (после водорода) элемент по распространенности во Вселенной. В то же время масса «земного» гелия составляет лишь одну миллионную массы земной коры. На Солнце значительное количество ядер гелия образуется при ядерном «горении» водорода, поэтому содержание этого элемента во Вселенной постепенно возрастает. Гелий образуется также при α-распаде радионуклидов. Он заполняет пустоты в радиоактивных горных породах и минералах, а оттуда попадает в атмосферу. В виде примеси гелий сопутствует метану. Основным источником гелия является природный газ.

Все благородные газы содержатся в воздухе, являющемся сырьем для их промышленного получения.

Радон – радиоактивный элемент. Наиболее долгоживущий изотоп 222 Rn, образующийся при α-распаде 226 Ra, имеет период полураспада 3,82 дня. Один грамм радия-226 за сутки выделяет 6,6 · 10–4 мл радона. В минералах тория присутствует некоторое количество изотопа 220 Rn.

1.1.3. Физические свойства

Все благородные газы не имеют цвета, вкуса и запаха, обладают низкими температурами плавления и кипения. Их молекулы одноатомные. Аргон, криптон и ксенон образуют клатраты на основе воды и гидрохинона, например Хе · 3С6 Н4 (ОН)2 , в которых атомы благородного газа расположены в полостях структуры вещества-«хозяина». Меньшие по размерам атомы гелия и аргона не способны удерживаться в полостях. Основные физические свойства простых веществ приведены в табл. 2.

Свойства простых веществ

Таблица 2

Свойство

Стандартная эн-

тальпия испаре-

ния, кДж/моль

t пл , ° С

t кип, ° С

5,2 · 10–4

1,8 · 10–3

1,1 · 10–3

8,7 · 10–6

6,0 ·10–18

в воздухе, %

Растворимость в

воде при 20 °С,

1.2. Химические свойства

Истинные химические соединения получены лишь для криптона, ксенона и радона. Лучше всего изучена химия ксенона, так как соединения криптона крайне неустойчивы, а радон радиоактивен.

Взаимодействие ксенона со фтором приводит к образованию смеси фторидов. Удобным методом синтеза дифторида, позволяющим избежать прямого фторирования, является окисление ксенона фторидом серебра (II) в присутствии кислоты Льюиса:

2AgF2 + 2BF3 + Хе = XeF2 + 2AgBF4.

Фториды ксенона представляют собой бесцветные летучие кристаллические вещества, легко гидролизующиеся. Дифторид ксенона образует устойчивые растворы, которые в течение нескольких часов разлагаются:

2XeF2 + 2Н2 O = 2Xe + 4HF + O2 .

Тетра- и гексафторид ксенона гораздо более чувствительны к влаге воздуха – при попадании в воду они мгновенно гидролизуются с образованием ХeO3 :

6XeF4 + 12H2 O = 2ХеO3 + 4Xe + 3O2 + 24HF, XeF6 + 3H2 O = XeO3 + 6HF.

Фториды ксенона имеют молекулярное строение (рис. 1). XeF2 – линейная молекула с тремя неподелеными электронными парами, лежащими в экваториальной плоскости (тип АВ2 Е3 ); XeF4 имеет форму квадрата с двумя неподелеными парами (тип АВ4 Е2 ), a XeF6 – искаженного октаэдра с одной неподеленой парой электронов (тип АВ6 Е). Свободные молекулы ХеF6 известны в паре.

Рис. 1. Строение молекул XeF2 (а), XeF4 (б), ХeF6 (динамическая модель с мигрирующей электронной парой) (в)

Метод молекулярных орбиталей описывает образование фторидов ксенона с позиций трехцентровых четырехэлектронных связей. Например, в образовании молекулы XeF2 участвуют p x -орбитали атома ксенона и двух атомов фтора (рис. 2). Их взаимодействие приводит к возникновению тpex молекулярных σ-орбиталей: связывающей, несвязывающей и разрыхляющей, первые две из которых заполнены электронами. Порядок связи, таким образом, оказывается равным единице. Соединения, содержащие трехцентровые четырехэлектронные связи, называют гипервалентными.

Рис. 2. Схема молекулярных орбиталей молекулы XeF2 . Справа показаны комбинации атомных орбиталей, участвующих в формировании каждой из молекулярных орбиталей молекулы

Фториды ксенона являются сильными окислителями. Они превращают броматы в перброматы, иодаты в периодаты, серу в гексафторид, соли марганца (II) в перманганаты:

3XeF2 + S = 3Хе + SF6 ,

5XeF2 + 2Mn(NO3 )2 + 16КОН = 2KMnO4 + 10KF + 4KNO3 + 8H2 O + 5Xe.

На этом основано использование фторидов ксенона в синтезе высших фторидов переходных металлов:

XeF2 + 2CeF3 → Xe + 2CeF4 .

Другим важным свойством фторидов ксенона является их способность выступать как донорами, так и акцепторами фторид-ионов. Донорные свойства убывают в ряду XeF2 > XeF6 > XeF4 . С типичными кислотами Льюиса PF5 , AsF5 , SbF5 , PtF5 и другими наиболее легко взаимодействует дифторид ксенона, образуя соли + – , + – :

XeF2 + AsF5 = + – .

Взаимодействием XeF2 с избытком пентафторида сурьмы при давлении 3 атм удалось получить темно-зеленые кристаллы, содержащие парамагнитный катион диксенона Хе2 + :

4XeF2 + 8SbF5 = 2Xe2 + – + 3F2 .

Расстояние Хе–Хе в катионе составляет 0,309 нм, что свидетельствует лишь об очень слабом взаимодействии.

Акцепторные свойства убывают в ряду XeF6 > XeF4 > ХeF2 . Они наиболее характерны для гексафторида ксенона, который легко вступает в реакции с фторидами тяжелых щелочных металлов (рубидия и цезия):

XeF6 + CsF = Cs+ – .

Для криптона известны лишь соединения со фтором в степени окисления +2. Фторид KrF2 образуется из простых веществ при температуре жид-

кого азота. Его обычно получают, пропуская электрический разряд через смесь криптона с фтором в реакторе, охлаждаемом жидким азотом. По строению и свойствам KrF2 напоминает дифторид ксенона, являясь по сравнению с ним еще более сильным окислителем. KrF2 окисляет трифторид золота до пентафторида и пентафторид хлора до иона + , превращает металлическое золото в золото (V):

7KrF2 + 2Au = 2KrF+ – + 5Kr.

Интересно, что свободный фтор в отличие от дифторида криптона не способен окислить золото доAuF5 .

Кислородные соединения известны лишь для ксенона. Ксенон образует два оксида: ХеО3 и ХеO4 (рис. 3), оба чрезвычайно неустойчивы и легко взрываются от малейшего сотрясения. Оксид ХеO3 образуется при гидролизе тетра- и гексафторидов или при действии гексафторида на оксид кремния:

2XeF6 + 3SiO2 = 2ХеO3 + 3SiF4 .

В свободном виде он представляет собой бесцветные кристаллы, хорошо растворимые в воде.

Рис. 3. Строение молекул XeO3 (а) и XeO4 (б)

Удалось выделить лишь кислые ксенаты щелочных металлов (М) состава МНХеO4 , которые при добавлении избытка щелочи диспропорционируют:

2NaHXeO4 + 2NaOH = Na4 XeO6 + Хе + O2 + 2Н2 O.

Так получают перксенаты – соли перксеноновой кислоты Н4 ХеО6 . Они содержат ион [ХеO6 ]4– , имеющий октаэдрическое строение.

Действием на перксенаты 100%-й серной кислоты получают высший оксид ксенона ХеO4 :

Na4 XeO6 + 2H2 SO4 = 2Na2 SO4 + XeO4 + 2H2 O.

Он представляет собой бесцветный газ, самопроизвольно взрывающийся, более устойчивы его растворы в донорных растворителях (BrF5 , HF), их можно хранить при температуре –33 °С. Тетраоксид ксенона и перксенаты – одни из самых сильных окислителей.

1.3. Применение

Первоначальное применение гелия как негорючего газа для наполнения аэростатов (его подъемная сила составляет приблизительно 1 кг/м3 ) потеря-

ло свое значение, хотя его все еще используют для метеорологических зондов. Гелий применяется в качестве криогенной жидкости для поддержания температур порядка 4,2 К и ниже (на эти цели идет 30 % получаемого Не); 2/3 расходуются на спектрометры и томографы ЯМР. Другие важные области применения – электродуговая сварка (21 %), герметизация и очистка (11 %). Выбор между Аr и Не для этих целей определяется стоимостью газа, и везде, кроме США, обычно предпочитают использовать аргон. Небольшие по объему, но важные области применения гелия таковы:

а) для замены N2 в искусственных газовых смесях при дыхании на большой глубине (низкая растворимость гелия в крови сводит к минимуму газовыделение, которое происходит в случае азота – когда водолаз проходит декомпрессию – и иногда приводит к смертельному исходу);

б) как рабочая среда в детекторах утечки газа; в) как теплоноситель в системе охлаждения высокотемпературных

ядерных реакторов; г) как газ-носитель в газожидкостной хроматографии;

д) для деаэрации растворов и вообще как инертный разбавитель или инертная атмосфера.

Аr применяют главным образом в качестве инертной газовой среды при высокотемпературных металлургических процессах и в меньшем количестве – для заполнения ламп накаливания. Вместе с Ne, Кr и Хе, которые получают в значительно меньших количествах, Аr также используют в разрядных трубках – получаемый цвет трубки зависит от того, какой состав имеет смесь газов. Благородные газы также используются в флуоресцентных трубках, хотя в этом случае цвет зависит не от газа, наполняющего трубку, а от фосфора, покрывающего изнутри стенки трубки. Еще одна важная область применения – лазеры, хотя по сравнению с другими областями применения количество газа, который здесь используется, незначительно.

Другие благородные газы существенно дороже, поэтому их применение ограничено только узкоспециальными областями. Радон использовали в лечении раковых заболеваний и в качестве источника радиоактивности в дефектоскопии металлического литья, однако из-за короткого периода полураспада (3,824 суток) его вытеснили другие материалы. То небольшое количество радона, которое требуется в практике, получают как продукт распада 226 Ra (1 г которого в течение 30 суток дает 0,64 см3 радона).

ГЛАВА 2. VIII-B ГРУППА

2.1. Простые вещества

2.1.1. Электронное строение

VIII-B группа включает сразу девять элементов: железо 26 Fe, рутений 44 Ru, осмий 76 Os, кобальт 27 Со, родий 45 Rh, иридий 77 Ir, никель 28 Ni, палладий 46 Pd и платину 78 Pt.

Свойства химических элементов VIII-B группы различаются не слишком сильно, что послужило причиной их объединения в триады. Сходство в свойствах обусловлено сохранением состава и строения наружной электронной оболочки атомов при последовательном увеличении атомного номера элемента и соответственно общего числа электронов в изолированном атоме. У элементов триад при неизменной структуре внешней электронной оболочки (главное квантовое число n = 4, 5, 6) достраивается (при росте атомного номера) соответствующий d -подуровень (электронный n – 1-слой), степень заполнения которого не оказывает определяющего влияния на размеры атомов и ионов, а также на свойства соединений – по крайней мере, если химическая связь в них имеет преимущественно ионный характер.

В то же время свойства соединений элементов триады железа отличаются от свойств аналогичных по составу соединений элементов триад палладия и платины (семейство платиновых элементов) очень существенно.

Одной из причин большего сходства между собой соединений платиновых элементов (ПЭ) по сравнению с соединениями триады железа является влияние лантанидного сжатия. Так, атомные радиусы элементов триад палладия и платины почти одинаковы, но значительно отличаются от радиусов атомов элементов триады железа.

При движении сверху вниз по группе возрастает устойчивость соединений, содержащих элемент в высшей степени окисления (см. схему ниже). Если для железа наиболее характерными являются степени окисления +2 и +3, а состояния +6 и особенно +8 неустойчивы, то для осмия вполне стабильны соединения, содержащие элемент в наиболее высокой из возможных степеней окисления +8. Аналогичная закономерность наблюдается при переходе от Со и Ni к их тяжелым аналогам. Так, для никеля наиболее устойчивы соединения, где он имеет степень окисления +2, а для палладия и особенно для платины характерна степень окисления +4.

Располагается в четвертом периоде.
Атомный вес железа 55, 84, заряд ядра +26. Распределение электронов по энергетическим уровням (+26): 2, 8, 14, 2. Электронная конфигурация внешнего и предвнешнего слоя железа 3s23p63d64s2.

Таким образом, у атома железа, помимо двух s -электронов четвёртого внешнего слоя, имеется еще шесть d -электронов третьего предвнешнего слоя. Из этих d -электронов наиболее активны 4 неспаренных. Следовательно, в образовании валентных связей железа особенно активно участвует 6 электронов - 2 из внешнего и 4 из предвнешнего слоев. Наиболее распространенными степенями окисления железа являются Fe +2 и Fe +3 . Железо - один из часто встречающихся в природе элементов. По распространенности среди остальных элементов оно занимает четвертое место.

■ 57. Исходя из строения атома железа, а также распределения электронов по орбиталям, укажите возможные степени окисления этого элемента.

Железо в свободном состоянии представляет собой серебристо-серый блестящий металл с плотностью 7,87, температурой плавления 1535° и температурой кипения 2740°. Железо обладает ярко выраженными ферромагнитными свойствами, т. е. под воздействием магнитного поля намагничивается и при прекращении действия поля сохраняет магнитные свойства, само становясь магнитом. Такими свойствами обладают все элементы группы железа.
По химическим свойствам железо является весьма активным металлом. В отсутствие влаги железо на воздухе не изменяется, но при воздействии влаги и кислорода воздуха подвергается сильной коррозии и покрывается рыхлой пленкой ржавчины, представляющей собой железа, которые не защищают его от дальнейшего окисления, и железо постепенно окисляется во всей своей массе:
4Fe + 2Н2О + 3О2 = 2Fe2O3 · 2H2O
Разработан ряд методов защиты этого ценнейшего металла от коррозии.

В ряду напряжений железо располагается левее водорода. В связи с этим оно легко подвергается действию разбавленных кислот, превращаясь в соль двухвалентного железа, например:
Fe + 2НСl = FeCl2 + Н2
С концентрированными серной и азотной кислотами железо не реагирует. Эти кислоты создают на поверхности металла такую прочную и плотную пленку окиси, что металл становится совершенно пассивным и уже не вступает в другие реакции. В же время при непосредственном взаимодействии с такими сильными окислителями, как , железо всегда проявляет степень окисления +3:
2Fe + 3Сl2 = 2FeCl3
Железо вступает в реакцию с перегретым паром; при этом из воды вытесняется , а раскаленное железо превращается в окисел, причем это всегда либо закись железа FeO, либо закись-окись железа Fe3O4(Fe2O3 · FeO):
Fe + Н2О = FeO + H2

3Fe + 4H2O = Fe3O4 + 4H2
Раскаленное в чистом кислороде железо энергично сгорает с образованием железной окалины (см. рис. 40).

3Fe + 2O2 = Fe3O4

При прокаливании железо образует с углеродом сплав и одновременно карбид железа Fe3C.

■ 58. Перечислите физические свойства железа.
59. Каковы химические свойства железа? Дайте обоснованный ответ.

Соединения железа

Железо образует два ряда соединений - соединения Fe +2 и Fe +3 . Для железа характерны два окисла - закись FeO и окись Fe2O3. Правда, известен смешанный окисел Fe3O4, молекула которого представляет собой двух- и трехвалентного железа: Fe2O3 · FeO. Этот окисел называется также железной окалиной, или закисью-окисью железа.

Соединения закисного железа менее стойки, чем окисно-о, и при наличии окислителя, даже если им является только воздуха, обычно переходят в соединения трехвалентного железа. Например, гидроокись железа (II) Fe(OH)2 представляет собой белое твердое вещество, но в чистом виде ее можно получить лишь тогда, когда растворы реагирующих веществ не содержат растворенного кислорода и если реакцию вести в отсутствие кислорода воздуха:
FeSO4 + 2NaOH = Fe(OH)2 + Na2SO4
Соль, из которой получают гидроокись железа (II), конечно, не должна содержать ни малейшей примеси окисных соединений. Поскольку такие условия создать в обычной учебной лаборатории очень трудно, гидроокись железа (II) получается в виде более или менее темно-зеленого осадка студенистого вида, что свидетельствует о происходящем окислении соединений двухвалентного железа в трехвалентное. Если гидроокись железа (II) держать длительное время на воздухе, постепенно происходит превращение ее в гидроокись железа (III) Fe(OH)3:

4Fe(OH)2 + О2 + 2Н2O = 4Fe(OH)3
железа являются типичными нерастворимыми гидроокисями. Гидроокись железа (II) обладает основными свойствами, а у Fe(OH)3 весьма слабо выражены амфотерные свойства.

■ 60. Перечислите свойства окиси железа как типичного основного окисла. Дайте обоснованный ответ. Все уравнения реакций напишите в полной и сокращенной ионных формах.

61. Перечислите свойства гидроокиси железа (II). Подтвердите свой ответ уравнениями реакций.

Среди солей железа (II) наибольшее значение имеет железный купорос FeSO4 · 7H2O, в состав которого входит 7 молекул кристаллизационной воды. Железный купорос хорошо растворяется в воде. Применяется он для борьбы с вредителями сельского хозяйства, а также при изготовлении красителей.
Из солей трехвалентного железа наибольшее значение имеет хлорид железа FeCl3, представляющий собой весьма гигроскопичные оранжевые кристаллы, которые при хранении поглощают воду и расплываются в коричневую кашицу.

Соли железа (II) легко могут переходить в соли железа (III), например при нагревании с азотной кислотой или с перманганатом калия в присутствии серной кислоты:
6FeSO4 + 2HNO3 + 3H2SO4 = 3Fe2(SO4)3 + 2NO + 4Н2O
Окисление солей Fe +2 в соли Fe +3 может происходить и под действием кислорода воздуха при хранении этих соединений, но только этот процесс более длительный. Для распознавания катионов Fe 2+ и Fe 3+ служат очень характерные специфические реактивы. Например, для распознавания двухвалентного железа берут красную кровяную соль K3, которая при наличии ионов двухвалентного железа дает с ними характерный интенсивный синий осадок турнбулевой сини:
3FeSО4 + 2K3 = Fe32 + 3K2SО4
или в ионном виде
3Fe 2+ + 2 3- = Fe32
Для распознавания солей Fe3+ применяют реакцию с желтой кровяной солью K4:
4FeCl3 + 3K4 = Fe43 + 12KCl

4Fe 3+ + 3 4- = Fe43
При этом выпадает интенсивного синего цвета осадок берлинской лазури. Берлинская лазурь и турнбулева синь используются в качестве красителей.
Кроме того, трехвалентное железо можно распознавать с помощью растворимых солей - роданида калия KCNS или роданида аммония NH4CNS. При взаимодействии этих веществ с солями Fe(III) раствор приобретает кроваво-красную окраску.

■ 62. Перечислите свойства солей Fe +3 и Fe +2 . Какая степень окисления является более устойчивой?
63. Как осуществить превращение соли Fe +2 в соль Fe +3 и наоборот? Приведите примеры.

Реакция идет по уравнению:
FeCl3 + 3KCNS = Fe(CNS)3 + 3КСl
или в ионном виде
Fe 3+ + 3CNS — = Fe(CNS),
Соединения железа играют большую роль в жизни организмов. Например, оно входит в состав главного белка крови - гемоглобина, а также зеленого растений - хлорофилла. Железо поступает в организм главным образом в составе органических веществ пищевых продуктов. Много железа содержат яблоки, яйца, шпинат, свекла. В качестве лекарственных препаратов железо применяется в виде солей органических кислот. Хлорид железа служит кровоостанавливающим средством.

■ 64. В трех пробирках находятся: а) сульфат железа (II), б) сульфат железа (III) и в) хлорид железа (III). Как определить, в какой пробирке какая соль?
65. Как осуществить ряд превращений:
Fe → FeCl2 → FeSO4 → Fe2(SO4)3 → Fe(OH)3 → Fe2O3.
66. Даны следующие : железо, едкий натр. Как, пользуясь только этими веществами, получить гидроокись железа (II) и гидроокись железа (III)?
67. Раствор, содержащий хлорид хрома (III) и хлорид железа (III), обработали избытком щелочи. Полученный осадок отфильтровали. Что осталось на фильтре и что перешло в фильтрат? Дайте обоснованный ответ при помощи уравнений реакций в молекулярной, полной ионной и сокращенной ионной формах.

Сплавы железа

Железо является основой черной металлургии, поэтому его добывают в огромных количествах. Новая программа развернутого строительства коммунизма предусматривает в 1980 г. производство 250 млн. т стали. Это в 3,8 раза больше, чем в 1960 г.
Железо почти никогда не применяется в чистом виде, а только в виде сплавов. Важнейшими сплавами железа являются его с углеродом - различные чугуны и стали. Основное отличие чугуна от стали в содержании углерода: в чугуне содержится более 1,7% углерода, а в стали - менее 1,7%.

Большое практическое значение имеют ферросплавы (сплав железа с кремнием), феррохром (сплав железа с хромом), ферромарганец (сплав железа с марганцем). Ферросплавы - это чугуны, содержащие более 10% железа и не менее 10% соответствующего компонента. Кроме того, в них имеются те же самые элементы, что и в чугуне. Ферросплавы применяются в основном при «раскислении» стали и как легирующие примеси.
Среди чугунов различают линейные и передельные. Литейный чугун используется для отливок различных деталей, передельный-переплавляется на сталь, так как обладает очень высокой твердостью и не поддается обработке. Передельный чугун белого цвета, а литейный - серого. Передельный чугун содержит больше марганца.

Стали бывают углеродистые и легированные. Углеродистые стали обычно представляют собой сплав железа с углеродом, а легированные содержат легирующие добавки, т. е. примеси других металлов, придающие стали более ценные свойства. придает стали ковкость, упругость, устойчивость при закалке, и - твердость и жаропрочность. Стали с добавками циркония очень упруги и пластичны; их используют для изготовления броневых плит. Примеси марганца делают сталь устойчивой к удару и трению. Бор повышает режущие свойства стали при изготовлении инструментальных сталей.
Иногда даже незначительные примеси редких металлов придают стали новые свойства. Если выдержать стальную деталь в порошке бериллия при температуре 900-1000°, твердость стали, ее износоустойчивость сильно повышаются.
Хромоникелевые или, как их еще называют, нержавеющие, стали устойчивы к коррозии. Сильно вредят стали примеси серы и фосфора - они делают металл хрупким.

■ 68. Какие важнейшие железа вам известны?
69. В чем главное отличие стали от чугуна?
70. Какие свойства чугуна и какие виды чугуна вы знаете?
71. Что такое легированные стали и легирующие добавки?

Доменный процесс

Чугун получается путем восстановительной плавки в доменных печах. Это огромные сооружения тридцатиметровой высоты, выдающие в сутки более 2000 т чугуна. Схема устройства доменной печи приведена на рис. 83.
Верхняя часть домны, через которую загружается шихта, называется колошником. Через колошник шихта

Рис. 83. Схема устройства доменной печи.

попадает в длинную шахту печи, расширяющуюся книзу, что облегчает передвижение загружаемого материала сверху вниз. По мере передвижения шихты к наиболее широкой части печи - распару - с ней происходит ряд превращений, в результате которых образуется чугун, стекающий в горн - наиболее горячую часть печи. Здесь же собирается шлак. Чугун и шлак выпускают из печи через специальные отверстия в горне, называемые летками. Через верхнюю часть горна в домну вдувают воздух, поддерживающий горение топлива в печи.

Рассмотрим химические процессы, протекающие при выплавке чугуна. Шихта доменной печи, т. е. комплекс загружаемых в нее веществ, состоит из железной руды, топлива и флюсов, или плавней. Железных руд имеется много. Главные руды - магнитный железняк Fe3О4, красный железняк Fe2О3, бурый железняк 2Fe2О8 · 3H2О. В доменном процессе в качестве железной руды применяется сидерит FeCO3, а иногда FeS2, превращающийся после обжига в колчеданных печах в огарок Fe2О3, который и может использоваться в металлургии. Такая руда менее желательна из-за большой примеси серы. Выплавляют в доменной печи не только чугун, но и ферросплавы. Топливо, загружаемое в печь, служит одновременно для поддержания высокой температуры в печи и для восстановления железа из руды, а также принимает участие в образовании сплава с углеродом. Топливом служит обычно кокс.

В процессе выплавки чугуна кокс газифицируется, превращаясь, как и в газогенераторе, сначала в двуокись а затем в окись углерода:
С + О2 = СО3 СО2 + С = 2СО
Образующаяся окись углерода является хорошим газообразным восстановителем. С ее помощью происходит восстановление железной руды:
Fe2О3 + 3СО = 3СО2 + 2Fe
Вместе с рудой, содержащей железо, в печь обязательно попадают примеси пустой породы. Они бывают весьма тугоплавки и могут закупорить печь, которая работает непрерывно долгие годы. Для того чтобы пустую породу было легко извлечь из печи, ее переводят в легкоплавкое соединение, превращая флюсами (плавнями) в шлак. Для перевода в шлак основной породы, содержащей, например, известняк, который разлагается в печи по уравнению
СаСО3 = СаО + СО2
добавляют песок. Сплавляясь с окисью кальция, песок образует силикат:
СаО + SiO3 = CaSiO3
Это вещество с несравненно более низкой температурой плавления. В жидком состоянии оно может быть выпущено из печи.

Если же порода кислая, содержащая большое количество двуокиси кремния, то тогда в печь загружается, наоборот, известняк, который переводит двуокись кремния в силикат, и в результате получается такой же шлак. Раньше шлак являлся отходом, а теперь его охлаждают водой и используют как строительный материал.
Для поддержания горения топлива в домну непрерывно подается подогретый, обогащенный кислородом воздух. Подогревается он в специальных воздухонагревателях - киуперах. Каупер - высокая башня, сложенная из огнеупорного кирпича, куда отводят отходящие из домны горячие газы. Доменные газы содержат двуокись углерода СО2, N2 и окись углерода СО. Окись углерода сгорает в каупере, тем самым повышая его температуру. Затем доменные газы автоматически направляются в другой каупер, а через первый начинается продувка воздуха, направляемого в домну. В раскаленном каупере воздух нагревается, и таким образом экономится топливо, которое в большом количестве расходовалось бы на подогрев поступающего в домну воздуха. Каждая домна имеет несколько кауперов.

■ 72. Каков состав-шихты доменной печи?
73. Перечислите основные химические процессы, протекающие при выплавке чугуна.
74. Каков состав доменного газа и как он используется в кауперах?
75. Сколько чугуна, содержащего 4% углерода, можно получить из 519, 1 кг магнитного железняка, содержащего 10% примесей?
76. Какое количество кокса дает объем окиси углерода, достаточный для восстановления 320 кг окиси железа, если кокс содержит 97% чистого углерода?
77. Как следует обработать сидерит и , чтобы из них можно было получить железо?

Выплавка стали

Сталь выплавляется в трех видах печей - в мартеновских регенеративных печах, бессемеровских конвертерах и электропечах.
Мартеновская печь - наиболее современная печь, предназначенная для выплавки главной массы стали (рис. 84). Мартеновская печь в отличие от доменной не является непрерывно действующей печью.

Рис. 84. Схема устройства мартеновской печи

Главная часть ее - это ванна, куда через окна специальной машиной загружают необходимые материалы. Ванна специальными ходами соединена с регенераторами, которые служат для нагрева горючих газов и воздуха, подающихся в печь. Нагревание же происходит за счет тепла продуктов горения, которые время от времени пропускают через регенераторы. Поскольку их несколько, то работают они по очереди и по очереди нагреваются. Мартеновская печь может выдавать до 500 т стали за одну плавку.

Шихта мартеновской печи весьма разнообразна: в состав шихты входят чугун, металлолом, руда, флюсы (плавни) такого же характера, как и в доменном процессе. Как и в доменном процессе, при выплавке стали осуществляется подогрев воздуха и горючих газов в регенераторах за счет тепла отходящих газов. Топливом в мартеновских печах является либо мазут, распыляемый форсунками, либо горючие газы, которые в настоящее время применяются особенно широко. Топливо здесь служит только для поддержания высокой температуры в печи.
Процесс выплавки стали принципиально отличается от доменного процесса, так как доменный процесс - процесс восстановительный, а выплавка стали -процесс окислительный, цель которого понизить содержание углерода путем его окисления в массе металла. Процессы, протекающие при этом, довольно сложные.

Содержащийся в руде и поступающий с воздухом в печь для сжигания газообразного топлива, окисляет , а также значительное количество железа, превращая его в основном в окись железа (II): 2Fe + О2 = 2FeO
Содержащиеся в чугуне , или какие-либо примеси других металлов при высокой температуре восстанавливают полученную окись железа (II) снова до металлического железа согласно уравнению: Si + 2FeO = SiO2 + 2Fe Мn + FeO = МnО + Fe
Аналогично реагирует с окисью железа (II) и : С + FeO = Fe + СО
В конце процесса для восстановления оставшейся окиси железа (II) (или, как говорят, для «раскисления» ее) добавляют «раскислители»- ферросплавы. Имеющиеся в них добавки марганца, кремния восстанавливают оставшуюся окись железа (II) по указанным выше уравнениям. После этого плавка заканчивается. Плавка в мартеновских печах ведется 8-10 часов.

Рис. 85. Схема устройства конвертора Бессемера

Бессемеровский конвертор (рис. 85) - печь более старого образца, но с очень высокой производительностью. Так как конвертор работает без затрат топлива, то этот способ производства стали занимает значительное место в металлургии. Конвертор - грушевидный стальной сосуд емкостью 20-30 т, футерованный изнутри огнеупорным кирпичом. Каждая плавка в конверторе продолжается 12-15 минут. Конвертор имеет ряд недостатков: он может работать только на жидком чугуне. Это связано с тем, что окисление углерода ведется воздухом, пропускаемым снизу через всю массу жидкого чугуна, что значительно ускоряет плавку и усиливает интенсивность окисления. Естественно, что «угар» железа в этом случае особенно велик. В то же время короткий срок плавки не позволяет регулировать ее, добавлять легирующие примеси, поэтому в конверторах выплавляют главным образом углеродистые стали. В конце плавки подачу воздуха прекращают и, как и в мартеновском процессе, добавляют «раскислители».

В электропечах (рис. 86) выплавляется легированная сталь специальных сортов, главным образом с высок и температурой плавления, содержащая , и другие добавки. Готовую сталь направляют в прокатку. Там на огромных прокатных станах - блюмингах и слябингах - обжимают раскаленные стальные болванки с помощью валков, позволяющих изготовлять из стального слитка разнообразные формы.

Рис 86. Схема электродуговой печи. 1 -электроды, 2- загрузочное окно, 3- желоб для выпуска стали, 4- поворотный механизм

Железо в виде сплавов находит широкое применение в народном хозяйстве. Без него не обходится ни одна отрасль народного хозяйства. В целях экономии черных металлов в настоящее время по мере возможности стараются заменять их синтетическими материалами.
Из черных металлов изготовляют станки и автомобили, самолеты и инструменты, арматуру для железобетонных конструкций, жесть для консервных коробок и кровельное листовое железо, корабли и мосты, сельскохозяйственные машины и балки, трубы и целый ряд бытовых изделий.

■ 78. В чем принципиальное отличие процесса выплавки стали от доменного процесса?
79. Какие печи служат для выплавки стали?
80. Что такое регенераторы в мартеновской печи?

81. Укажите состав шихты мартеновской печи и его отличие от состава шихты доменной печи?
82. Что такое «раскислители»?
83. Почему выплавку стали называют окислительной плавкой?
84. Сколько стали, содержащей 1% углерода, можно получить из 116,7 кг чугуна, содержащего 4% углерода?
85. Сколько потребуется ферромарганца, содержащего 80% марганца, чтобы «раскислить» 36 кг закиси железа?

Статья на тему Железо, побочная подгруппа VIII группы

ЖЕЛЕЗО И ЭЛЕКТРИЧЕСТВО Свойства сталей разнообразны. Есть стали, предназначенные для долгого пребывания в морской воде, стали, выдерживающие высокую температуру и...

Подгруппа состоит из 9 элементов и является в этом смысле уникальной в Периодической таблице. Другим уникальным свойством этой группы является то, что элементы этой подгруппы не достигают высшей степени окисления (за исключением Ru и Os). Общепринятым является деление 9 элементов на 4 семейства: триаду железа и диады Ru-Os, Rh-Ir, Pd-Pt. Такое деление оправдано кайносимметричностью 3d-подуровня элементов Fe, Co и Ni, а также лантаноидным сжатием у Os, Ir и Pt.

Химия элементов триады железа Простые вещества

Железо по распространенности на Земле занимает четвертое место, однако большая его часть находится в непригодном для промышленного использования состоянии (алюмосиликаты). Промышленное значение имеют только руды на основе оксидов железа FeO и Fe 2 O 3 . Кобальт и никель – малораспространенные элементы, которые хотя и образуют собственные минералы, в промышленности добываются из полиметаллических руд.

Получение элементов сводится к восстановлению их из оксидов. В качестве восстановителя используют производные углерода (кокс, CO), поэтому получаемый металл содержит до нескольких процентов углерода. Железо, содержащее более 2% углерода, называется чугуном; этот материал хорошо подходит для литья массивных изделий, но механическая прочность его невелика. Путем выжигания углерода в мартеновских печах или конверторах получают сталь, из которой можно получать механически прочные изделия. Зависимость свойств материала от способа его получения и обработки особенно хорошо видна для железа: сочетание закалки и отпуска позволяет получить разные по свойствам материалы.

Получение Co и Ni – сложный процесс. На конечном этапе оксиды металлов (CoO, Co 2 O 3 , NiO) восстанавливают углем, и полученный металл очищают электролизом.

Свойства простых веществ сильно зависят от наличия в них примесей других элементов. Чистые компактные металлы устойчивы на воздухе при обычных температурах за счет образования прочной оксидной пленки, особенно Ni. Однако в высокодисперсном состоянии данные металлы пирофорны, т.е. самовоспламеняются.

При нагревании Fe, Co, Ni реагируют с основными неметаллами, причем взаимодействие железа с хлором происходит особенно интенсивно из-за летучести образующегося FeCl 3 , который не защищает поверхность металла от окисления. Наоборот, взаимодействие Ni с фтором практически не происходит из-за образования прочной пленки фторида, поэтому никелевую аппаратуру используют при работе со фтором.

С водородом Fe, Co, Ni не образуют определенных соединений, но способны поглощать его в заметных количествах, особенно в высокодисперсном состоянии. Поэтому металлы семейства железа являются хорошими катализаторами процессов гидрирования.

С неокисляющими кислотами металлы реагируют хорошо:

Э + 2HCl  ЭCl 2 + H 2

Окисляющие кислоты пассивируют металлы, а со щелочами реакция не протекает из-за основного характера оксидов металлов.

Соединения э(0)

Эта степень окисления характерна для карбонилов. Железо образует карбонил состава Fe(CO) 5 , кобальт – Co 2 (CO) 8 , а никель – Ni(CO) 4 . Карбонил никеля образуется особенно легко (50 °C, атмосферное давление), поэтому его используют для получения чистого никеля.

Соединения Э(+2)

Устойчивость соединений в этой степени окисления растет от Fe к Ni. Это связано с тем, что увеличение заряда ядра при неизменном размере атома усиливает связь между ядром и d-электронами, поэтому последние труднее отрываются.

Соединения Э(+2) получаются растворением металлов в кислотах. Гидроксиды Э(OH) 2 выпадают в осадок про добавлении к водным растворам солей раствора щелочи:

ЭCl 2 + 2NaOH = Э(OH) 2  + 2NaCl

Отсюда можно сделать вывод о подверженности солей рассматриваемых металлов гидролизу по катиону. В результате гидролиза получаются разные продукты, в том числе и полиядерные комплексы, например NiOH + ,.

Прокаливанием Э(OH) 2 без доступа воздуха можно получить оксиды. Оксиды и гидроксиды проявляют преимущественно основной характер; ферраты(+2), кобальтаты(+2) и никелаты(+2) получаются только в жестких условиях, например сплавлением:

Na 2 O + NiO = Na 2 NiO 2

Сульфиды Э(+2) можно осадить из водных растворов с помощью Na 2 S или даже H 2 S (в отличие от MnS, который не осаждается с помощью H 2 S), но в сильных кислотах эти сульфиды растворяются, что используется в химическом анализе:

Э 2+ + S 2–  Э 2 S, Э 2 S + 2H + (изб.)  Э 2+ + H 2 S

Из соединений Э(+2) только Fe(+2) проявляет заметные восстановительные свойства. Так, все простые (не комплексные) соединения Fe(+2) окисляются кислородом воздуха и другими сильными окислителями:

4Fe(OH) 2 + 2H 2 O + O 2  4Fe(OH) 3

10FeSO 4 + 2KMnO 4 + 8H 2 SO 4  5Fe 2 (SO 4) 3 + K 2 SO 4 + 2MnSO 4 + 8H 2 O

Соединения кобальта(+2) и никеля(+2) окисляются только сильными окислителями, например NaOCl:

Э(OH) 2 + NaOCl + x H 2 O  Э 2 O 3 x H 2 O + NaCl

Соединения Э(+3)

Устойчивые соединения в этой степени окисления дает железо и, отчасти, кобальт. Из производных Ni(+3) устойчивыми являются только комплексные соединения.

Гидроксиды Э(OH) 3 получаются действием щелочи на растворы солей или окислением Э(OH) 2:

FeCl 3 + 3NaOH = Fe(OH) 3 ↓ + 3NaCl

2Co(OH) 2 + H 2 O 2 = 2Co(OH) 3

При этом получаются продукты, содержащие переменное количество воды (не имеющие постоянного состава). Оксиды являются конечными продуктами обезвоживания гидроксидов, однако получить чистые Co 2 O 3 и Ni 2 O 3 не удается из-за их разложения на кислород и низший оксид. Для железа и кобальта удается получить оксиды состава Э 3 O 4 , которые можно рассматривать как смешанные оксиды ЭOЭ 2 O 3 . С другой стороны Э 3 O 4 являются солями, отвечающими кислотной функции гидроксидов Э(OH) 3 .

Fe 2 O 3 + Na 2 O  2NaFeO 2

Гораздо лучше выражены основные функции Fe(OH) 3:

Fe(OH) 3 + 3HCl  FeCl 3 + 3H 2 O

Ввиду того, что Fe(OH) 3 является слабым электролитом, соли Fe(+3) подвержены гидролизу. Продукты гидролиза окрашивают раствор в характерный бурый цвет, а при кипячении раствора выпадает осадок Fe(OH) 3:

Fe 3+ + 3H 2 O  Fe(OH) 3 + 3H +

Получить простые соли Co(+3) и Ni(+3), отвечающие основной функции гидроксида Э(OH) 3 не удается: в кислой среде протекают окислительно-восстановительные реакции с образованием Э(+2):

2Co 3 O 4 + 12HCl  6CoCl 2 + O 2 + 6H 2 O

Соединения Co(+3) и Ni(+3) могут быть только окислителями, причем достаточно сильными, а железо(+3) не относится к числу сильных окислителей. Тем не менее получить соли Э(+3) с анионом-восстановителем (I – , S 2–) не всегда удается. Например:

2Fe(OH) 3 + 6HI  2FeI 2 + 6H 2 O + I 2

В отличие от кобальта и никеля, железо дает производные Fe(+6), которые получаются жестким окислением Fe(OH) 3 в щелочной среде:

2Fe(OH) 3 + 3Br 2 +10KOH  2K 2 FeO 4 + 6KBr + 8H 2 O

Ферраты(+6) являются более сильными окислителями, чем перманганаты.

6721 0

В 18 группу входят Не, Ne, Ar, Кr, Хе, Rn (табл. 1 и 2). Все элементы этой группы, кроме Не , имеют полностью заполненную валентными электронами внешнюю оболочку (8 электронов). Поэтому ранее считали, что они химически не реакционноспособны. Отсюда название «инертные» газы. Из-за малой распространенности в атмосфере их также называют редкими газами. Все благородные газы при комнатной температуре существуют в виде одноатомных молекул, бесцветны, не имеют запаха. При перемещении к нижней части группы повышаются плотность, температуры плавления и кипения элементов. От других элементов по свойствам отличается гелий. В частности, он имеет самую низкую из всех известных веществ температуру кипения и проявляет свойство сверхтекучести.

Таблица 1. Некоторые физические и химические свойства металлов 18 группы


Название

Относит, ат. масса

Электронная формула

Радиус, пм

Основные изотопы (%)

Гелий Helium [от греч. helios — солнце]

атомный 128

3 Не* (0.000138)

4 Не* (99.99986)

Неон Neon [от греч. neos — новый]

Вандерваальсов 160

Аргон Argon [от греч. argos — неактивный]

ls 2 2s 2 2p 6 3s 2 3p 6

атомный 174

Криптон Krypton [от греч. Kryptos — скрытый]

3d 10 4s 2 4p 6

Ковалентный 189

Ксенон Xenon [от греч. xenos — незнакомец]

4d 10 5s 2 5p 6

атомный 218,

ковалентный 209

129 Хе* (26,4)

Радон Radon [назван по аналогии с радием]

4f 14 5d 10 6s 2 6p 6

219*,220,222 Rn (следы)

Гелий (Не) — после водорода второй по распространенности элемент во вселенной. Встречается в атмосфере и в месторождениях природного газа. Химически неактивен. Его используют при водолазных работах в составе дыхательной смеси вместо азота, в аэростатах, в приборах для низкотемпературных исследований. Жидкий Не является важным хладагентом со сверхвысокой теплопроводностью, поэтому его применяют в ЯМР-спектрометрах на сильных полях, в том числе в медицинских магнитно-резонансных томографах (МРТ).

Неон (Ne) — химически инертен по отношению ко всем веществам, кроме F 2 . Его используют в газоразрядных трубках (красные «неоновые» огни). В последнее время начали применять в качестве хладагента.

Аргон (Аr) — наиболее распространенный в атмосфере благородный газ. Не имеет ни одного парамагнитного изотопа. Его используют для создания инертной атмосферы в флуоресцентных светильниках и фотоумножителях, в высокотемпературной металлургии; широко применяют в спектроскопии для получения высокотемпературной плазмы в высокочастотных (индуктивно-связанных) спектрометрах и масс-спектрометрах.

Криптон (Кr) — реагирует только с F 2 . 86 Kr имеет в атомном спектре оранжево-красную линию, которая является базовой для стандарта единиц длины: 1 метр равен 1 650 763,73 длины волны этой линии в вакууме. В промышленности криптон используют для наполнения флуоресцентных трубок и ламп-фотовспышек. Из возможных соединений наиболее изучен дифторид KrF 2 .

Ксенон (Хе) — используется для наполнения электронных трубок и стробоскопических (мигающих) ламп, в научных исследованиях, а также в пузырьковых камерах на атомных реакторах. Реагирует практически только с F 2 , образуя XeF 2 , XeF 4 , XeF 6 . Эти фториды используют как окислители и реактивы для фторирования других веществ, например, S или Ir . Известны также оксиды, кислоты и соли ксенона.

Радон (Rn) — образуется при α-распаде 226 Ra в виде 222 Rn . Его применяют в медицине, в частности, для лечения онкологических заболеваний. При хроническом воздействии опасен для здоровья, поскольку выявлена связь ингаляций Rn с развитием рака легких.

Таблица 2. Содержание в организме, токсическая (ТД) и летальная дозы (ЛД) металлов 18 группы


В земной коре (%)

В океане (%)

В человеческом организме

Среднее (при массе тела 70 кг)

Кровь (мг/л)

нетоксичен, но может вызывать асфиксию

нетоксичен

токсичен из-за радиоактивности

Медицинская бионеорганика. Г.К. Барашков