Ванная комната

Уравнение 5 степени решение примеров. Уравнения высших степеней

Уравнение 5 степени решение примеров. Уравнения высших степеней

Судя по началу публикации, которое мы здесь опустим, текст писал Юрий Игнатьевич. И написано хорошо, и проблематика злободневная, вот только так называть Россию, как это делает Мухин...

Как бы кто ни относился к антинародной власти, Россия выше неё и не заслуживает оскорблений. Даже от талантливого разоблачителя лжи американского агенства НАСА.

*

Обращение к тов. Мухину Ю.И.


Уважаемый Юрий Игнатьевич! Я знаю, что вы посещаете эти страницы. Поэтому обращаюсь к вам напрямую.

Мы все ценим ваш подвижнический труд на ниве разоблачения лжи Запада, лжи Америки, лжи псевдоучёных, лжи либералов. Мы с удовольствием и пользой для себя и общества задумываемся над серьёзными темами, которые вы нам время от времени подбрасываете, будь то меритократия или метафизика, любовь к отечественной истории или восстановление справедливости.

Однако ваши определения нашей общей с вами Родины вызывают недоумение и сильно огорчают.

Впрочем, посудите сами: как бы вы охарактеризовали человека, который стал оскорблять свою заболевшую и от этого временно переставшую работать мать?

А ведь Россия, как бы она ни именовалась, и какой бы хорошей или отвратительной ни была власть, - Россия это наша Родина. Родина-мать. За неё наши деды проливали кровь и клали свои жизни.

Поэтому ставить её в один ряд с властью - это опускать духовное возвышенное на уровень материального, да ещё и низкого. Т.е. вы проводите сравнение совершенно различных категорий. Вещь, недопустимая для любого вменяемого человека.

Прошу вас, уважаемый тов. Мухин, серьёзно задуматься над этим.

**


...А с уравнениями (я этого и не знал) положение таково. Как найти корни квадратного уравнения догадались ещё в древнем Египте .

Как найти корни кубического уравнения и уравнения четвёртой степени, нашли в шестнадцатом веке, а вот найти корни уравнения пятой степени до 2016 года не могли. А пытались далеко не простые люди.

В шестнадцатом веке найти корни уравнения пятой степени пытался основоположник символической алгебры Франсуа Виет, в девятнадцатом веке это пытался сделать основатель современной высшей алгебры французский математик Эварист Галуа, после него найти корни уравнений пятой степени пробовал норвежский математик Нильс Хенрик Абель, который, в конце концов, сдался и доказал невозможность решения уравнения пятой степени в общем виде.

Читаем в Википедии о заслугах Абеля: «Абель закончил блестящее исследование древней проблемы: доказал невозможность решить в общем виде (в радикалах) уравнение 5-й степени…

В алгебре Абель нашёл необходимое условие для того, чтобы корень уравнения выражался «в радикалах» через коэффициенты этого уравнения. Достаточное условие вскоре открыл Галуа, чьи достижения опирались на труды Абеля.

Абель привёл конкретные примеры уравнения 5-й степени, чьи корни нельзя выразить в радикалах, и тем самым в значительной степени закрыл древнюю проблему».

Как видите, если теорему Пуанкаре доказать пытались всё время и Перельман оказался удачливее остальных математиков, то после Абеля за уравнения пятой степени математики и не брались.

А в 2014 году математик из Томска Сергей Зайков , о котором по фото можно судить, что он уже в годах, а по данным из статьи о нём, что он выпускник факультета прикладной математики и кибернетики Томского государственного университета, в ходе своей работы получил уравнения пятой степени. Тупик? Да, тупик! Но Сергей Зайков взялся его проломить.

И в 2016 году он нашёл способы решений уравнений пятой степени в общем виде! Сделал то, невозможность чего доказали математики Галуа и Абель.

Я попытался найти сведения о Сергее Зайкове в Википедии, но хрен вам! О математике Сергее Зайкове и о нахождении им решения уравнений пятой степени сведений нет!

Пикантность делу придаёт и то, что для математиков существует аналог Нобелевской премии - Абелевская премия (Нобель запретил давать премию математикам и теперь её дают за математические испражнения, называя их «физикой »).

Эта математическая премия в честь того самого Абеля, который доказал невозможность того, что сделал Зайков . Однако, самовыдвижение на эту премию не допускается. А Зайков математик-одиночка и нет никаких организаций, которые могли бы предложить его кандидатуру на соискание этой премии.

Правда у нас есть Академия наук, но ведь там академики сидят не для развития математики, а «бабло пилить». Кому там нужен этот Зайков?

Ну а для новостных агентств Зайков - это вам не Перельман! Посему открытие Зайкова для СМИ - это не сенсация.

Вот то, что Порошенко дверью ошибся - это да! Это настоящая сенсация!

Томский математик решил проблему, которую не могли решить двести лет

С появлением алгебры ее основной задачей считалось решение алгебраических уравнений. Решение уравнения второй степени было известно еще в Вавилоне и Древнем Египте. Мы проходим такие уравнения в школе. Помните уравнение x2 + ax + b = 0, и дискриминант?

Сергей Зайков с книгой

Решение алгебраических уравнений третьей и четвертой степени было найдено в шестнадцатом веке. Но решить уравнение пятой степени не удалось. Причину нашел Лагранж. Он показал, что решение уравнений третьей и четвертой степени стало возможным потому, что их можно свести к уравнениям, ранее уже решенным. Уравнение третьей степени можно свести к уравнению второй степени, а уравнение четвертой — к уравнению третьей. Но уравнение пятой степени сводится к уравнению шестой, т. е. более сложному, поэтому традиционные методы решения не применимы.

Вопрос о решении уравнения пятой степени сдвинулся с места лишь двести лет назад, когда Абель доказал, что не все уравнения пятой степени можно решить в радикалах, т. е. в квадратных, кубических и иных корнях, известных нам по школе. А Галуа вскоре, т. е. двести лет назад, нашел критерий, позволяющий определить, какие уравнения пятой степени можно решить в радикалах, а какие нет. Он заключается в том, что группа Галуа, разрешимых в радикалах уравнения пятой степени, должна быть либо циклической или метациклической. Но Галуа не нашел способ решения в радикалах тех уравнений пятой степени, которые разрешимы в радикалах. Теория Галуа очень известна, о ней написано много книг.

До сих пор находились лишь частные решения для разрешимых в радикалах уравнений пятой степени. И только в этом году томский математик Сергей Зайков решил задачу, которую не могли решить двести лет. Опубликовал книгу «Как решаются в радикалах алгебраические уравнения пятой степени», в которой указал способ решения для любых уравнений пятой степени, которые разрешимы в радикалах. Зайков — выпускник факультета прикладной математики и кибернетики Томского государственного университета. Нам удалось взять у него интервью.

— Сергей, почему Вы стали решать эту задачу?

— Мне нужно было решение уравнения пятой степени для решения задачи из другого раздела математики. Я начал выяснять, как его найти, и узнал, что не все из них решаются в радикалах. Тогда я попытался найти в научной литературе способ решения тех уравнений, которые разрешимы в радикалах, но нашел лишь критерий, по которому можно определить, какие разрешимы, а какие нет. Я не алгебраист, но, разумеется, как выпускник ФПМК, умею применять и алгебраические методы. Поэтому я с 2014 г. всерьез начал искать решение и нашел его сам.

Способ был найден мной два года назад, я подготовил книгу, в которой был описан не только он, но и способы решения некоторых уравнений степеней больше пятой. Но у меня не было денег для ее издания. В этом году я решил, что проще опубликовать лишь часть этой работы, и взял только ее половину, посвященную способу решения уравнения пятой степени в радикалах.

Я поставил своей целью публикацию что-то вроде руководства по решению этой задачи, понятной для математиков, которым необходимо решить конкретное уравнение. Поэтому упростил ее, убрав множество длинных формул и значительную часть теории, урезав более чем наполовину, оставив только необходимое. Поэтому у меня получилось что-то вроде книжки «для чайников», по которой математики, не знакомые с теорией Галуа, могут решить нужное им уравнение.

— За это большое спасибо Владиславу Бересневу, с которым мы знакомы много лет. Он проспонсировал издание книги.

— Возможно ли получение Вами какой-либо премии по математике за решение этой задачи? Например, Вы упоминали Абеля. А ведь есть Абелевская премия по математике, которую считают аналогом нобелевской?

— Полностью исключить такую возможность нельзя. Но и надеяться на это не стоит.

Например, заявки на кандидатов на Абелевскую премию 2019 г. подаются до 15 сентября. Причем самовыдвижение не допускается. А я математик-одиночка. Нет никаких организаций или известных математиков, которые предложат мою кандидатуру. Поэтому она не будет рассматриваться независимо от того, заслуживает ли моя работа этой премии, и насколько соответствует духу этой премии вручение ее тем, кто продолжает работы Абеля. Но даже в случае, если она будет представлена, все зависит еще и от уровня работ других кандидатов.

Книга рассчитана на тех, кто не знаком с теорией Галуа. Основы теории Галуа даются только в той части, в которой они необходимы для решения уравнения, детально описан способ решения, показаны приемы, упрощающие решение. Значительная часть книги посвящена примеру решения конкретного уравнения. Рецензентами книги являются доктор технических наук Геннадий Петрович Агибалов и доктор физ. мат. наук, профессор Петр Андреевич Крылов.

ПОДГОТОВИЛА АНАСТАСИЯ СКИРНЕВСКАЯ



Рассмотрим решения уравнений с одной переменной степени выше второй.

Степенью уравнения Р(х) = 0 называется степень многочлена Р(х), т.е. наибольшая из степеней его членов с коэффициентом, не равным нулю.

Так, например, уравнение (х 3 – 1) 2 + х 5 = х 6 – 2 имеет пятую степень, т.к. после операций раскрытия скобок и приведения подобных получим равносильное уравнение х 5 – 2х 3 + 3 = 0 пятой степени.

Вспомним правила, которые понадобятся для решения уравнений степени выше второй.

Утверждения о корнях многочлена и его делителях:

1. Многочлен n-й степени имеет число корней не превышающее число n, причем корни кратности m встречаются ровно m раз.

2. Многочлен нечетной степени имеет хотя бы один действительный корень.

3. Если α – корень Р(х), то Р n (х) = (х – α) · Q n – 1 (x), где Q n – 1 (x) – многочлен степени (n – 1).

4.

5. Приведенный многочлен с целыми коэффициентами не может иметь дробных рациональных корней.

6. Для многочлена третьей степени

Р 3 (х) = ах 3 + bx 2 + cx + d возможно одно из двух: либо он разлагается в произведение трех двучленов

Р 3 (x) = а(х – α)(х – β)(х – γ), либо разлагается в произведение двучлена и квадратного трехчлена Р 3 (x) = а(х – α)(х 2 + βх + γ).

7. Любой многочлен четвертой степени раскладывается в произведение двух квадратных трехчленов.

8. Многочлен f(x) делится на многочлен g(х) без остатка, если существует многочлен q(x), что f(x) = g(x) · q(x). Для деления многочленов применяется правило «деления уголком».

9. Для делимости многочлена P(x) на двучлен (x – c) необходимо и достаточно, чтобы число с было корнем P(x) (Следствие теоремы Безу).

10. Теорема Виета: Если х 1 , х 2 , …, х n – действительные корни многочлена

Р(х) = а 0 х n + а 1 х n - 1 + … + а n , то имеют место следующие равенства:

х 1 + х 2 + … + х n = -а 1 /а 0 ,

х 1 · х 2 + х 1 · х 3 + … + х n – 1 · х n = a 2 /а 0 ,

х 1 · х 2 · х 3 + … + х n – 2 · х n – 1 · х n = -a 3 / а 0 ,

х 1 · х 2 · х 3 · х n = (-1) n a n / а 0 .

Решение примеров

Пример 1.

Найти остаток от деления Р(х) = х 3 + 2/3 x 2 – 1/9 на (х – 1/3).

Решение.

По следствию из теоремы Безу: «Остаток от деления многочлена на двучлен (х – с) равен значению многочлена от с». Найдем Р(1/3) = 0. Следовательно, остаток равен 0 и число 1/3 – корень многочлена.

Ответ: R = 0.

Пример 2.

Разделить «уголком» 2х 3 + 3x 2 – 2х + 3 на (х + 2). Найти остаток и неполное частное.

Решение:

2х 3 + 3x 2 – 2х + 3| х + 2

2х 3 + 4 x 2 2x 2 – x

X 2 – 2 x

Ответ: R = 3; частное: 2х 2 – х.

Основные методы решения уравнений высших степеней

1. Введение новой переменной

Метод введения новой переменной уже знаком на примере биквадратных уравнений. Он заключается в том, что для решения уравнения f(x) = 0 вводят новую переменную (подстановку) t = x n или t = g(х) и выражают f(x) через t, получая новое уравнение r(t). Решая затем уравнение r(t), находят корни:

(t 1 , t 2 , …, t n). После этого получают совокупность n уравнений q(x) = t 1 , q(x) = t 2 , … , q(x) = t n , из которых находят корни исходного уравнения.

Пример 1.

(х 2 + х + 1) 2 – 3х 2 – 3x – 1 = 0.

Решение:

(х 2 + х + 1) 2 – 3(х 2 + x) – 1 = 0.

(х 2 + х + 1) 2 – 3(х 2 + x + 1) + 3 – 1 = 0.

Замена (х 2 + х + 1) = t.

t 2 – 3t + 2 = 0.

t 1 = 2, t 2 = 1. Обратная замена:

х 2 + х + 1 = 2 или х 2 + х + 1 = 1;

х 2 + х - 1 = 0 или х 2 + х = 0;

Ответ: Из первого уравнения: х 1, 2 = (-1 ± √5)/2, из второго: 0 и -1.

2. Разложение на множители методом группировки и формул сокращенного умножения

Основа данного метода также не нова и заключается в группировке слагаемых таким образом, чтобы каждая группа содержала общий множитель. Для этого иногда приходится применять некоторые искусственные приемы.

Пример 1.

х 4 – 3x 2 + 4х – 3 = 0.

Решение.

Представим - 3x 2 = -2x 2 – x 2 и сгруппируем:

(х 4 – 2x 2) – (x 2 – 4х + 3) = 0.

(х 4 – 2x 2 +1 – 1) – (x 2 – 4х + 3 + 1 – 1) = 0.

(х 2 – 1) 2 – 1 – (x – 2) 2 + 1 = 0.

(х 2 – 1) 2 – (x – 2) 2 = 0.

(х 2 – 1 – х + 2)(х 2 – 1 + х - 2) = 0.

(х 2 – х + 1)(х 2 + х – 3) = 0.

х 2 – х + 1 = 0 или х 2 + х – 3 = 0.

Ответ: В первом уравнении нет корней, из второго: х 1, 2 = (-1 ± √13)/2.

3. Разложение на множитель методом неопределенных коэффициентов

Суть метода состоит в том, что исходный многочлен раскладывается на множители с неизвестными коэффициентами. Используя свойство, что многочлены равны, если равны их коэффициенты при одинаковых степенях, находят неизвестные коэффициенты разложения.

Пример 1.

х 3 + 4x 2 + 5х + 2 = 0.

Решение.

Многочлен 3-й степени можно разложить в произведение линейного и квадратного множителей.

х 3 + 4x 2 + 5х + 2 = (х – а)(x 2 + bх + c),

х 3 + 4x 2 + 5х + 2 = х 3 +bx 2 + cх – ax 2 – abх – ac,

х 3 + 4x 2 + 5х + 2 = х 3 + (b – a)x 2 + (cх – ab)х – ac.

Решив систему:

{b – a = 4,
{c – ab = 5,
{-ac = 2,

{a = -1,
{b = 3,
{c = 2, т.е.

х 3 + 4x 2 + 5х + 2 = (х + 1)(x 2 + 3х + 2).

Корни уравнения (х + 1)(x 2 + 3х + 2) = 0 находятся легко.

Ответ: -1; -2.

4. Метод подбора корня по старшему и свободному коэффициенту

Метод опирается на применение теорем:

1) Всякий целый корень многочлена с целыми коэффициентами является делителем свободного члена.

2) Для того, чтобы несократимая дробь p/q (p – целое, q – натуральное) была корнем уравнения с целыми коэффициентами, необходимо, чтобы число p было целым делителем свободного члена а 0 , а q – натуральным делителем старшего коэффициента.

Пример 1.

6х 3 + 7x 2 – 9х + 2 = 0.

Решение:

6: q = 1, 2, 3, 6.

Следовательно, p/q = ±1, ±2, ±1/2, ±1/3, ±2/3, ±1/6.

Найдя один корень, например – 2, другие корни найдем, используя деление уголком, метод неопределенных коэффициентов или схему Горнера.

Ответ: -2; 1/2; 1/3.

Остались вопросы? Не знаете, как решать уравнения?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

На канал на youtube нашего сайта сайт, чтобы быть в курсе всех новых видео уроков.

Для начала вспомним основные формулы степеней и их свойства.

Произведение числа a само на себя происходит n раз, это выражение мы можем записать как a a … a=a n

1. a 0 = 1 (a ≠ 0)

3. a n a m = a n + m

4. (a n) m = a nm

5. a n b n = (ab) n

7. a n /a m = a n — m

Степенные или показательные уравнения – это уравнения в которых переменные находятся в степенях (или показателях), а основанием является число.

Примеры показательных уравнений:

В данном примере число 6 является основанием оно всегда стоит внизу, а переменная x степенью или показателем.

Приведем еще примеры показательных уравнений.
2 x *5=10
16 x — 4 x — 6=0

Теперь разберем как решаются показательные уравнения?

Возьмем простое уравнение:

2 х = 2 3

Такой пример можно решить даже в уме. Видно, что x=3. Ведь чтобы левая и правая часть были равны нужно вместо x поставить число 3.
А теперь посмотрим как нужно это решение оформить:

2 х = 2 3
х = 3

Для того, чтобы решить такое уравнение, мы убрали одинаковые основания (то есть двойки) и записали то что осталось, это степени. Получили искомый ответ.

Теперь подведем итоги нашего решения.

Алгоритм решения показательного уравнения:
1. Нужно проверить одинаковые ли основания у уравнения справа и слева. Если основания не одинаковые ищем варианты для решения данного примера.
2. После того как основания станут одинаковыми, приравниваем степени и решаем полученное новое уравнение.

Теперь прорешаем несколько примеров:

Начнем с простого.

Основания в левой и правой части равны числу 2, значит мы можем основание отбросить и приравнять их степени.

x+2=4 Получилось простейшее уравнение.
x=4 — 2
x=2
Ответ: x=2

В следующем примере видно, что основания разные это 3 и 9.

3 3х — 9 х+8 = 0

Для начала переносим девятку в правую сторону, получаем:

Теперь нужно сделать одинаковые основания. Мы знаем что 9=3 2 . Воспользуемся формулой степеней (a n) m = a nm .

3 3х = (3 2) х+8

Получим 9 х+8 =(3 2) х+8 =3 2х+16

3 3х = 3 2х+16 теперь видно что в левой и правой стороне основания одинаковые и равные тройке, значит мы их можем отбросить и приравнять степени.

3x=2x+16 получили простейшее уравнение
3x — 2x=16
x=16
Ответ: x=16.

Смотрим следующий пример:

2 2х+4 — 10 4 х = 2 4

В первую очередь смотрим на основания, основания разные два и четыре. А нам нужно, чтобы были — одинаковые. Преобразовываем четверку по формуле (a n) m = a nm .

4 х = (2 2) х = 2 2х

И еще используем одну формулу a n a m = a n + m:

2 2х+4 = 2 2х 2 4

Добавляем в уравнение:

2 2х 2 4 — 10 2 2х = 24

Мы привели пример к одинаковым основаниям. Но нам мешают другие числа 10 и 24. Что с ними делать? Если приглядеться видно, что в левой части у нас повторяется 2 2х,вот и ответ — 2 2х мы можем вынести за скобки:

2 2х (2 4 — 10) = 24

Посчитаем выражение в скобках:

2 4 — 10 = 16 — 10 = 6

Все уравнение делим на 6:

Представим 4=2 2:

2 2х = 2 2 основания одинаковые, отбрасываем их и приравниваем степени.
2х = 2 получилось простейшее уравнение. Делим его на 2 получаем
х = 1
Ответ: х = 1.

Решим уравнение:

9 х – 12*3 х +27= 0

Преобразуем:
9 х = (3 2) х = 3 2х

Получаем уравнение:
3 2х — 12 3 х +27 = 0

Основания у нас одинаковы равны трем.В данном примере видно, что у первой тройки степень в два раза (2x) больше, чем у второй (просто x). В таком случаем можно решить методом замены . Число с наименьшей степенью заменяем:

Тогда 3 2х = (3 х) 2 = t 2

Заменяем в уравнении все степени с иксами на t:

t 2 — 12t+27 = 0
Получаем квадратное уравнение. Решаем через дискриминант, получаем:
D=144-108=36
t 1 = 9
t 2 = 3

Возвращаемся к переменной x .

Берем t 1:
t 1 = 9 = 3 х

Стало быть,

3 х = 9
3 х = 3 2
х 1 = 2

Один корень нашли. Ищем второй, из t 2:
t 2 = 3 = 3 х
3 х = 3 1
х 2 = 1
Ответ: х 1 = 2; х 2 = 1.

На сайте Вы можете в разделе ПОМОГИТЕ РЕШИТЬ задавать интересующие вопросы мы Вам обязательно ответим.

Вступайте в группу

В общем случае уравнение, имеющее степень выше 4 , нельзя разрешить в радикалах. Но иногда мы все же можем найти корни многочлена, стоящего слева в уравнении высшей степени, если представим его в виде произведения многочленов в степени не более 4 -х. Решение таких уравнений базируется на разложении многочлена на множители, поэтому советуем вам повторить эту тему перед изучением данной статьи.

Чаще всего приходится иметь дело с уравнениями высших степеней с целыми коэффициентами. В этих случаях мы можем попробовать найти рациональные корни, а потом разложить многочлен на множители, чтобы потом преобразовать его в уравнение более низкой степени, которое будет просто решить. В рамках этого материала мы рассмотрим как раз такие примеры.

Уравнения высшей степени с целыми коэффициентами

Все уравнения, имеющие вид a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 = 0 , мы можем привести к уравнению той же степени с помощью умножения обеих частей на a n n - 1 и осуществив замену переменной вида y = a n x:

a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 = 0 a n n · x n + a n - 1 · a n n - 1 · x n - 1 + … + a 1 · (a n) n - 1 · x + a 0 · (a n) n - 1 = 0 y = a n x ⇒ y n + b n - 1 y n - 1 + … + b 1 y + b 0 = 0

Те коэффициенты, что получились в итоге, также будут целыми. Таким образом, нам нужно будет решить приведенное уравнение n-ной степени с целыми коэффициентами, имеющее вид x n + a n x n - 1 + … + a 1 x + a 0 = 0 .

Вычисляем целые корни уравнения. Если уравнение имеет целые корни, нужно искать их среди делителей свободного члена a 0 . Выпишем их и будем подставлять в исходное равенство по очереди, проверяя результат. Как только мы получили тождество и нашли один из корней уравнения, то можем записать его в виде x - x 1 · P n - 1 (x) = 0 . Здесь x 1 является корнем уравнения, а P n - 1 (x) представляет собой частное от деления x n + a n x n - 1 + … + a 1 x + a 0 на x - x 1 .

Подставляем остальные выписанные делители в P n - 1 (x) = 0 , начав с x 1 , поскольку корни могут повторяться. После получения тождества корень x 2 считается найденным, а уравнение может быть записано в виде (x - x 1) (x - x 2) · P n - 2 (x) = 0 .Здесь P n - 2 (x) будет частным от деления P n - 1 (x) на x - x 2 .

Продолжаем и дальше перебирать делители. Найдем все целые корни и обозначим их количество как m . После этого исходное уравнение можно представить как x - x 1 x - x 2 · … · x - x m · P n - m (x) = 0 . Здесь P n - m (x) является многочленом n - m -ной степени. Для подсчета удобно использовать схему Горнера.

Если у нас исходное уравнение имеет целые коэффициенты, мы не можем получить в итоге дробные корни.

У нас в итоге получилось уравнение P n - m (x) = 0 , корни которого могут быть найдены любым удобным способом. Они могут быть иррациональными или комплексными.

Покажем на конкретном примере, как применяется такая схема решения.

Пример 1

Условие: найдите решение уравнения x 4 + x 3 + 2 x 2 - x - 3 = 0 .

Решение

Начнем с нахождений целых корней.

У нас есть свободный член, равный минус трем. У него есть делители, равные 1 , - 1 , 3 и - 3 . Подставим их в исходное уравнение и посмотрим, какие из них дадут в итоге тождества.

При x , равном единице, мы получим 1 4 + 1 3 + 2 · 1 2 - 1 - 3 = 0 , значит, единица будет корнем данного уравнения.

Теперь выполним деления многочлена x 4 + x 3 + 2 x 2 - x - 3 на (х - 1) в столбик:

Значит, x 4 + x 3 + 2 x 2 - x - 3 = x - 1 x 3 + 2 x 2 + 4 x + 3 .

1 3 + 2 · 1 2 + 4 · 1 + 3 = 10 ≠ 0 (- 1) 3 + 2 · (- 1) 2 + 4 · - 1 + 3 = 0

У нас получилось тождество, значит, мы нашли еще один корень уравнения, равный - 1 .

Делим многочлен x 3 + 2 x 2 + 4 x + 3 на (х + 1) в столбик:

Получаем, что

x 4 + x 3 + 2 x 2 - x - 3 = (x - 1) (x 3 + 2 x 2 + 4 x + 3) = = (x - 1) (x + 1) (x 2 + x + 3)

Подставляем очередной делитель в равенство x 2 + x + 3 = 0 , начиная с - 1:

1 2 + (- 1) + 3 = 3 ≠ 0 3 2 + 3 + 3 = 15 ≠ 0 (- 3) 2 + (- 3) + 3 = 9 ≠ 0

Равенства, полученные в итоге, будут неверными, значит, у уравнения больше нет целых корней.

Оставшиеся корни будут корнями выражения x 2 + x + 3 .

D = 1 2 - 4 · 1 · 3 = - 11 < 0

Из этого следует, что у данного квадратного трехчлена нет действительных корней, но есть комплексно сопряженные: x = - 1 2 ± i 11 2 .

Уточним, что вместо деления в столбик можно применять схему Горнера. Это делается так: после того, как мы определили первый корень уравнения, заполняем таблицу.

В таблице коэффициентов мы сразу можем увидеть коэффициенты частного от деления многочленов, значит, x 4 + x 3 + 2 x 2 - x - 3 = x - 1 x 3 + 2 x 2 + 4 x + 3 .

После нахождения следующего корня, равного - 1 , мы получаем следующее:

Ответ: х = - 1 , х = 1 , x = - 1 2 ± i 11 2 .

Пример 2

Условие: решите уравнение x 4 - x 3 - 5 x 2 + 12 = 0 .

Решение

У свободного члена есть делители 1 , - 1 , 2 , - 2 , 3 , - 3 , 4 , - 4 , 6 , - 6 , 12 , - 12 .

Проверяем их по порядку:

1 4 - 1 3 - 5 · 1 2 + 12 = 7 ≠ 0 (- 1) 4 - (- 1) 3 - 5 · (- 1) 2 + 12 = 9 ≠ 0 2 4 · 2 3 - 5 · 2 2 + 12 = 0

Значит, x = 2 будет корнем уравнения. Разделим x 4 - x 3 - 5 x 2 + 12 на х - 2 , воспользовавшись схемой Горнера:

В итоге мы получим x - 2 (x 3 + x 2 - 3 x - 6) = 0 .

2 3 + 2 2 - 3 · 2 - 6 = 0

Значит, 2 опять будет корнем. Разделим x 3 + x 2 - 3 x - 6 = 0 на x - 2:

В итоге получим (x - 2) 2 · (x 2 + 3 x + 3) = 0 .

Проверка оставшихся делителей смысла не имеет, поскольку равенство x 2 + 3 x + 3 = 0 быстрее и удобнее решить с помощью дискриминанта.

Решим квадратное уравнение:

x 2 + 3 x + 3 = 0 D = 3 2 - 4 · 1 · 3 = - 3 < 0

Получаем комплексно сопряженную пару корней: x = - 3 2 ± i 3 2 .

Ответ : x = - 3 2 ± i 3 2 .

Пример 3

Условие: найдите для уравнения x 4 + 1 2 x 3 - 5 2 x - 3 = 0 действительные корни.

Решение

x 4 + 1 2 x 3 - 5 2 x - 3 = 0 2 x 4 + x 3 - 5 x - 6 = 0

Выполняем домножение 2 3 обеих частей уравнения:

2 x 4 + x 3 - 5 x - 6 = 0 2 4 · x 4 + 2 3 x 3 - 20 · 2 · x - 48 = 0

Заменяем переменные y = 2 x:

2 4 · x 4 + 2 3 x 3 - 20 · 2 · x - 48 = 0 y 4 + y 3 - 20 y - 48 = 0

В итоге у нас получилось стандартное уравнение 4 -й степени, которое можно решить по стандартной схеме. Проверим делители, разделим и получим в итоге, что оно имеет 2 действительных корня y = - 2 , y = 3 и два комплексных. Решение целиком здесь мы не будем приводить. В силу замены действительными корнями данного уравнения будут x = y 2 = - 2 2 = - 1 и x = y 2 = 3 2 .

Ответ: x 1 = - 1 , x 2 = 3 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

В XVI веке математики почти случайно натолкнулись на комплексные числа (см. Главу 11). К XVIII веку комплексные числа считались расширением области действительных чисел, но работа с ними все еще приводила к ошибке четности, как в труде Леонарда Э своем великом труде по теории чисел «Арифметические исследования» (1801) избегал использования так называемых «мнимых чисел». Как мне кажется, самая важная часть этой работы - первое доказательство фундаментальной теоремы алгебры. Гаусс понял, насколько важной была эта теорема, создав за последующие годы несколько дополнительных доказательств. В 1849 году он переделал первый вариант, на сей раз использовав комплексные числа. Пользуясь современными терминами, можно сказать, что для любого конечного многочленного уравнения с действительными или комплексными коэффициентами все его корни будут действительными или комплексными числами. Таким образом, мы получаем отрицательный ответ на давний вопрос о том, требует ли решение полиномиальных уравнений высокого порядка создания чисел более высокого порядка, чем комплексные.

Одной из самых тернистых проблем алгебры того времени был вопрос, разрешим ли алгебраическими методами, то есть с помощью конечного числа алгебраических шагов, полиномиал пятого порядка - квинтик. Сейчас в школе учат формулу решения квадратных уравнений, а с XVI века известны аналогичные методы для решения уравнений третьей и четвертой степени (Глава 11). Но для квинтиков не было найдено ни одного метода. Может показаться, что фундаментальная теорема алгебры содержит перспективу положительного ответа, но на самом деле она просто гарантирует, что решения существуют, в ней ничего не говорится о существовании формул, дающих точные решения (к тому времени уже существовали приблизительные числовые и графические методы). И вот появились два математических гения с трагической судьбой.

Нильс Хенрик Абель (1802–1829) родился в большой бедной семье, жившей в маленькой деревушке в Норвегии - стране, разоренной долгими годами войны с Англией и Швецией. Учитель, доброжелательно настроенный к мальчику, давал ему частные уроки, но после смерти отца, в восемнадцать лет, несмотря на юный возраст и хрупкое здоровье, Абель вынужден был содержать семью. В 1824 году он издал научную статью, в которой заявил, что квинтик не разрешим алгебраическими средствами, как, впрочем, и любой полиномиал более высокого порядка. Абель полагал, что эта статья послужит ему пропуском в научный мир, и послал ее Гауссу в университет Геттингена. К сожалению, Гаусс так и не собрался разрезать страницы ножом (в те дни этим приходилось заниматься любому читателю) и не прочитал статью. В 1826 году норвежское правительство наконец выделило Абелю средства для поездки по Европе. Опасаясь, что личное общение с Гауссом не доставит ему большой радости, математик решил не посещать Геттинген и вместо этого поехал в Берлин. Там он подружился с Августом Леопольдом Крелле (1780–1855), математиком, архитектором и инженером, консультировавшим прусское министерство образования по вопросам математики. Крелл собирался основать «Журнал чистой и прикладной математики». Так Абель получил возможность распространить свой труд и много печатался, особенно в ранних номерах «Журнала», который сразу же стал считаться очень престижным и авторитетным научным изданием. Норвежец напечатал там расширенную версию своего доказательства, что квинтик неразрешим алгебраическими методами. А затем уехал в Париж. Эта поездка очень огорчила Абеля, потому что он практически не получил так необходимой ему поддержки французских математиков. Он сблизился с Огюстеном Луи Коши (1789–1857), который в то время был главным светилом математического анализа, но имел очень сложный характер. Как выразился сам Абель, «Коши безумен, и с этим ничего нельзя поделать, хотя в настоящее время он - единственный, кто на что-то способен в математике». Если пытаться искать оправдания проявлениям неуважения и пренебрежения, исходившим от Гаусса и Коши, можно сказать, что квинтик достиг определенной славы и привлекал внимание как уважаемых математиков, так и оригиналов. Абель возвратился в Норвегию, где все сильнее страдал от туберкулеза. Он продолжал посылать свои работы Крелле, но в 1829 году умер, не зная о том, насколько упрочилась его репутация в научном мире. Через два дня после смерти на адрес Абеля пришло предложение занять научную должность в Берлине.

Абель показал, что любой полиномиал выше четвертого порядка не может быть решен с помощью радикалов, вроде корней квадратных, кубических или более высокого порядка. Однако явные условия, при которых в особых случаях эти полиномиалы могли быть решены, и метод их решения сформулировал Галуа. Эварист Галуа (1811–1832) прожил короткую и богатую событиями жизнь. Он был невероятно одаренным математиком. Галуа был неумолим к тем, кого считал менее талантливым, чем он сам, и при этом терпеть не мог социальную несправедливость. Он не выказывал никаких способностей к математике до тех пор, пока не прочитал труд Лежандра «Начала геометрии» (изданная в 1794 году, эта книга в течение последующих ста лет была основным учебником). Затем он буквально проглотил остальные труды Лежандра и, позднее, Абеля. Его энтузиазм, уверенность в себе и нетерпимость привели к поистине ужасным последствиям в его отношениях с преподавателями и экзаменаторами. Галуа принял участие в конкурсе на поступление в Политехническую школу - колыбель французской математики, но из-за неподготовленности провалил экзамен. Некоторое время после знакомства с новым преподавателем, который признал его дарование, ему удавалось держать свой нрав под контролем. В марте 1829 года Галуа издал свою первую статью о непрерывных дробях, которую считал своей самой значительной работой. Он послал сообщение о своих открытиях в Академию наук, и Коши обещал представить их, но забыл. Более того, он просто потерял рукопись.

Второй провал Галуа при поступлении в Политехническую школу вошел в математический фольклор. Он настолько привык постоянно держать в голове сложные математические идеи, что его привели в бешенство мелочные придирки экзаменаторов. Поскольку экзаменаторы с трудом понимали его объяснения, он бросил тряпку для стирания с доски в лицо одному из них. Вскоре после этого умер его отец, покончивший с собой в результате церковных интриг. На его похоронах практически вспыхнул бунт. В феврале 1830 года Галуа написал следующие три статьи, послав их в Академию наук на соискание гран-при по математике. Жозеф Фурье, в то время бывший секретарем академии, умер, так и не прочитав их, и после его смерти статей среди его бумаг не нашли. Такой поток разочарований свалил бы любого. Галуа восстал против власть имущих, потому что чувствовал: они не признавали его достоинств и погубили его отца. Он с головой окунулся в политику, став ярым республиканцем, - не самое мудрое решение во Франции 1830 года. В последней отчаянной попытке он послал научную статью знаменитому французскому физику и математику Симеону Дени Пуассону (1781–1840), который в ответе потребовал дополнительных доказательств.

Это стало последней каплей. В 1831 году Галуа был дважды арестован - в первый раз за то, что якобы призывал к убийству короля Луи Филиппа, а затем ради того, чтобы его защитить, - власти опасались республиканского бунта! На сей раз он был приговорен к шестимесячному заключению по сфабрикованному обвинению в незаконном ношении формы расформированного артиллерийского батальона, в который он поступил. Освобожденный под честное слово, он занялся делом, которое вызывало у него такое же отвращение, как и все остальное в жизни. В письмах к преданному другу Шевалье чувствуется его разочарование. 29 мая 1832 года он принял вызов на дуэль, причины которой до конца не выяснены. «Я пал жертвой бесчестной кокетки. Моя жизнь гаснет в жалкой ссоре», - пишет он в «Письме всем республиканцам». Самая известная работа Галуа была набросана в ночь перед роковым поединком. На полях рассыпаны жалобы: «У меня больше нет времени, у меня больше нет времени». Он вынужден был оставить другим подробное изложение промежуточных шагов, которые были несущественны для понимания основной идеи. Ему необходимо было выплеснуть на бумагу основу своих открытий - истоки того, что ныне называют теоремой Галуа. Он закончил свое завещание, попросив Шевалье «обратиться к Якоби и Гауссу с просьбой публично высказать свое мнение не относительно правильности, а относительно важности этих теорем». Ранним утром Галуа отправился на встречу со своим соперником. Они должны были стреляться с расстояния в 25 шагов. Галуа был ранен и умер в больнице на следующее утро. Ему было всего двадцать лет.

Галуа опирался на работы Лагранжа и Коши, однако он разработал более общий метод. Это было крайне важное достижение в области решения квинтиков. Ученый уделял меньше внимания исходным уравнениям или графической интерпретации, а больше думал о природе самих корней. Для упрощения Галуа рассматривал только так называемые неприводимые квинтики, то есть те, которые не могли быть разложены на множители в виде полиномиалов более низкого порядка (как мы сказали, для любых полиномиальных уравнений до четвертого порядка есть формулы нахождения их корней). Вообще неприводимый многочлен с рациональными коэффициентами - это полиномиал, который не может быть разложен на более простые многочлены, имеющие рациональные коэффициенты. Например, (x 5 - 1) может быть разложен на множители (х-1)(x 4 + х 3 + х 2 + х + 1), тогда как (x 5 - 2) неприводим. Цель Галуа состояла в том, чтобы определить условия, при которых все решения общего неприводимого многочленного уравнения могут быть найдены в терминах радикалов.

Ключ к решению заключается в том, что корни любого неприводимого алгебраического уравнения не независимы, они могут быть выражены один через другой. Эти соотношения были формализованы в группу всех возможных перестановок, так называемую группу симметрии корней - для квинтика эта группа содержит 5! = 5 х 4 х 3 х 2 х 1 = 120 элементов. Математические алгоритмы теории Галуа очень сложны, и, скорее всего, отчасти именно вследствие этого их поначалу понимали с большим трудом. Но после того как уровень абстракции позволил перейти от алгебраических решений уравнений к алгебраической структуре связанных с ними групп, Галуа смог предсказать разрешимость уравнения на основании свойств таких групп. Более того, его теория также обеспечила метод, которым можно было найти сами эти корни. Что касается квинтиков, то математик Жозеф Лиувилль (1809–1882), который в 1846 году издал большую часть работ Галуа в своем «Журнале чистой и прикладной математики», отметил, что молодой ученый доказал «красивую теорему», и для того, «чтобы неприводимое уравнение исходной степени было разрешимо в терминах радикалов, необходимо и достаточно, чтобы все его корни были рациональными функциями любых двух из них». Поскольку для квинтика это невозможно, он не может быть решен с помощью радикалов.

За три года математический мир потерял две самые яркие новые звезды. Последовали взаимные обвинения и переоценка ценностей, и Абель и Галуа добились заслуженного признания, но лишь посмертно. В 1829 году Карл Якоби через Лежандра узнал о «потерянной» рукописи Абеля, и в 1830 году разразился дипломатический скандал, когда норвежский консул в Париже потребовал отыскать статью своего соотечественника. В конце концов Коши нашел статью, но лишь затем, чтобы ее снова потеряли в редакции академии! В том же году Абелю был присужден Гран-при по математике (совместно с Якоби) - но он был уже мертв. В 1841 году была издана его биография. В 1846 году Лиувилль отредактировал некоторые из рукописей Галуа для публикации и во введении выразил сожаление, что первоначально академия отвергла работу Галуа из-за ее сложности, - «действительно, необходима ясность изложения, когда автор уводит читателя с избитого пути на неизведанные дикие территории». Он продолжает: «Галуа больше нет! Не будем впадать в бесполезный критицизм. Давайте отбросим недостатки и посмотрим на достоинства!» Плоды краткой жизни Галуа умещаются всего на шестидесяти страницах. Редактор математического журнала для кандидатов в Эколь Нормаль и Политехническую школу прокомментировал дело Галуа следующим образом: «Соискатель с высоким интеллектом был отсеян экзаменатором с более низким уровнем мышления. Barbarus hic ego sum, quia non intelligor illis ».

Прежде всего, вторая страница этой работы не обременена именами, фамилиями, описаниями положения в обществе, титулами и элегиями в честь некоего скупого принца, кошелек которого будет открыт с помощью этих фимиамов - с угрозой закрыть его, когда восхваления закончатся. Вы не увидите здесь почтительных восхвалений, написанных буквами втрое большими, чем сам текст, обращенных к тем, кто обладает высоким положением в науке, некоему мудрому покровителю - нечто обязательное (я бы сказал, неизбежное) для кого-то в возрасте двадцати лет, кто хочет что-то написать. Я не говорю здесь никому, что я обязан их совету и поддержке всем хорошим, что есть в моей работе. Я не говорю этого потому, что это было бы ложью. Если бы мне пришлось упомянуть кого-либо из великих в обществе или в науке (в настоящее время различие между этими двумя классами людей практически незаметно), клянусь, это не было бы знаком благодарности. Я обязан им тем, что я издал первые из этих двух статей столь поздно, и тем, что написал все это в тюрьме - в месте, которое вряд ли можно считать подходящим для научных размышлений, и я часто поражаюсь своей сдержанности и способности держать рот на замке по отношению к тупым и злобным зоилам. Мне кажется, я могу использовать слово «зоилы» без опасения быть обвиненным в неблагопристойности, поскольку именно так я именую моих оппонентов. Я не собираюсь писать здесь о том, как и почему я был отправлен в тюрьму, но я должен сказать, что мои рукописи чаще всего просто терялись в папках господ членов академии, хотя, по правде говоря, я не могу представить себе подобной неосмотрительности со стороны людей, на совести которых смерть Абеля. На мой взгляд, любой хотел бы, чтобы его сравнивали с этим блестящим математиком. Достаточно сказать, что моя статья по теории уравнений была направлена в Академию наук в феврале 1830 года, что извлечения из нее были посланы в феврале 1829 года, и при этом ничего из этого не было напечатано, и даже рукопись оказалось невозможно возвратить.

Галуа, неопубликованное предисловие, 1832 год