Трубы

Алгоритм решения простейших показательных неравенств. Как решать показательные неравенства

Алгоритм решения простейших показательных неравенств. Как решать показательные неравенства

Показательными уравнениями и неравенствами считают такие уравнения и неравенства, в которых неизвестное содержится в показателе степени.

Решение показательных уравнений часто сводится к решению уравнения а х = а b , где а > 0, а ≠ 1, х – неизвестное. Это уравнение имеет единственный корень х = b, так как справедлива следующая теорема:

Теорема. Если а > 0, а ≠ 1 и а х 1 = а х 2 , то х 1 = х 2 .

Обоснуем рассмотренное утверждение.

Предположим, что равенство х 1 = х 2 не выполняется, т.е. х 1 < х 2 или х 1 = х 2 . Пусть, например, х 1 < х 2 . Тогда если а > 1, то показательная функция у = а х возрастает и поэтому должно выполняться неравенство а х 1 < а х 2 ; если 0 < а < 1, то функция убывает и должно выполняться неравенство а х 1 > а х 2 . В обоих случаях мы получили противоречие условию а х 1 = а х 2 .

Рассмотрим несколько задач.

Решить уравнение 4 ∙ 2 х = 1.

Решение.

Запишем уравнение в виде 2 2 ∙ 2 х = 2 0 – 2 х+2 = 2 0 , откуда получаем х + 2 = 0, т.е. х = -2.

Ответ. х = -2.

Решить уравнение 2 3х ∙ 3 х = 576.

Решение.

Так как 2 3х = (2 3) х = 8 х, 576 = 24 2 , то уравнение можно записать в виде 8 х ∙ 3 х = 24 2 или в виде 24 х = 24 2 .

Отсюда получаем х = 2.

Ответ. х = 2.

Решить уравнение 3 х+1 – 2∙3 х - 2 = 25.

Решение.

Вынося в левой части за скобки общий множитель 3 х - 2 , получаем 3 х - 2 ∙ (3 3 – 2) = 25 – 3 х - 2 ∙ 25 = 25,

откуда 3 х - 2 = 1, т.е. х – 2 = 0, х = 2.

Ответ. х = 2.

Решить уравнение 3 х = 7 х.

Решение.

Так как 7 х ≠ 0, то уравнение можно записать в виде 3 х /7 х = 1, откуда (3/7) х = 1, х = 0.

Ответ. х = 0.

Решить уравнение 9 х – 4 ∙ 3 х – 45 = 0.

Решение.

Заменой 3 х = а данное уравнение сводится к квадратному уравнению а 2 – 4а – 45 = 0.

Решая это уравнение, находим его корни: а 1 = 9, а 2 = -5, откуда 3 х = 9, 3 х = -5.

Уравнение 3 х = 9 имеет корень 2, а уравнение 3 х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.

Ответ. х = 2.

Решение показательных неравенств часто сводится к решению неравенств а х > а b или а х < а b . Эти неравенства решаются с помощью свойства возрастания или убывания показательной функции.

Рассмотрим некоторые задачи.

Решить неравенство 3 х < 81.

Решение.

Запишем неравенство в виде 3 х < 3 4 . Так как 3 > 1, то функция у = 3 х является возрастающей.

Следовательно, при х < 4 выполняется неравенство 3 х < 3 4 , а при х ≥ 4 выполняется неравенство 3 х ≥ 3 4 .

Таким образом, при х < 4 неравенство 3 х < 3 4 является верным, а при х ≥ 4 – неверным, т.е. неравенство
3 х < 81 выполняется тогда и только тогда, когда х < 4.

Ответ. х < 4.

Решить неравенство 16 х +4 х – 2 > 0.

Решение.

Обозначим 4 х = t, тогда получим квадратное неравенство t2 + t – 2 > 0.

Это неравенство выполняется при t < -2 и при t > 1.

Так как t = 4 х, то получим два неравенства 4 х < -2, 4 х > 1.

Первое неравенство не имеет решений, так как 4 х > 0 при всех х € R.

Второе неравенство запишем в виде 4 х > 4 0 , откуда х > 0.

Ответ. х > 0.

Графически решить уравнение (1/3) х = х – 2/3.

Решение.

1) Построим графики функций у = (1/3) х и у = х – 2/3.

2) Опираясь на наш рисунок, можно сделать вывод, что графики рассмотренных функций пересекаются в точке с абсциссой х ≈ 1. Проверка доказывает, что

х = 1 – корень данного уравнения:

(1/3) 1 = 1/3 и 1 – 2/3 = 1/3.

Иными словами, мы нашли один из корней уравнения.

3) Найдем другие корни или докажем, что таковых нет. Функция (1/3) х убывающая, а функция у = х – 2/3 возрастающая. Следовательно, при х > 1 значения первой функции меньше 1/3, а второй – больше 1/3; при х < 1, наоборот, значения первой функции больше 1/3, а второй – меньше 1/3. Геометрически это означает, что графики этих функций при х > 1 и х < 1 «расходятся» и потому не могут иметь точек пересечения при х ≠ 1.

Ответ. х = 1.

Заметим, что из решения этой задачи, в частности, следует, что неравенство (1/3) х > х – 2/3 выполняется при х < 1, а неравенство (1/3) х < х – 2/3 – при х > 1.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Здравствуйте! Дорогие мои ученики, в этой статье мы научимся с вами решать показательные неравенства.

Каким бы сложным не показалось вам показательное неравенство, после некоторых преобразований (о них мы поговорим чуть позже) все неравенства сводятся к решению простейших показательных неравенств :

а х > b , a x < b и a x ≥ b , a x ≤ b .

Давайте попробуем разобраться как же решаются такие неравенства.

Мы рассмотрим решение строгих неравенств . Отличие при решении нестрогих неравенств заключается только в том, что полученные соответствующие корни включаются в ответ.

Пусть надо решить неравенство вида а f (x) > b , где a>1 и b>0 .

Посмотрите на схему решения таких неравенств (рисунок 1):

Сейчас рассмотрим конкретный пример. Решить неравенство: 5 х – 1 > 125 .

Так как 5 > 1 и 125 > 0, то
х – 1 > log 5 125, то есть
х – 1 > 3,
х > 4.

Ответ: (4; +∞) .

А каким же будет решение этого же неравенства а f (x) >b , если 0 и b>0 ?

Итак, схема на рисунке 2

Пример: Решить неравенство (1/2) 2x - 2 4

Применяя правило (рисунок 2), получаем
2х – 2 ≤ log 1/2 4,
2х – 2 ≤ –2,
2х ≤ 0,
х ≤ 0.

Ответ: (–∞; 0] .

Снова рассмотрим это же неравенство а f (x) > b , если a>0 и b<0 .

Итак, схема на рисунке 3:


Пример решения неравенства (1/3) х + 2 > –9 . Как мы замечаем, какое бы число мы не подставили вместо х, (1/3) х + 2 всегда больше нуля.

Ответ: (–∞; +∞) .

А как же решаются неравенства вида а f (x) < b , где a>1 и b>0 ?

Схема на рисунке 4:

И следующий пример: 3 3 – х ≥ 8 .
Поскольку 3 > 1 и 8 > 0, то
3 – х > log 3 8, то есть
–х > log 3 8 – 3,
х < 3 – log 3 8.

Ответ: (0; 3–log 3 8) .

Как же измениться решение неравенства а f (x) < b , при 0 и b>0 ?

Схема на рисунке 5:

И следующий пример: Решить неравенство 0,6 2х – 3 < 0,36 .

Cледуя схеме на рисунке 5, получаем
2х – 3 > log 0,6 0,36 ,
2х – 3 > 2,
2х > 5,
х > 2,5

Ответ: (2,5; +∞) .

Рассмотрим последнюю схему решения неравенства вида а f (x) < b , при a>0 и b<0 , представленную на рисунке 6:

Например, решим неравенство:

Замечаем, что какое бы число мы не подставили вместо х, левая часть неравенства всегда больше нуля, а у нас это выражение меньше -8, т.е. и нуля, значит решений нет.

Ответ: решений нет .

Зная как решаются простейшие показательные неравенства, можно приступить и к решению показательных неравенств .

Пример 1.

Найти наибольшее целое значение х, удовлетворяющее неравеству

Так как 6 х больше нуля (ни при каком х знаменатель в ноль не обращается), умножим обе части неравенства на 6 х, получим:

440 – 2· 6 2х > 8, тогда
– 2· 6 2х > 8 – 440,
– 2· 6 2х > – 332,
6 2х < 216,
2х < 3,

x < 1,5. Наибольшее целое число из помежутка (–∞; 1,5) это число 1.

Ответ: 1 .

Пример 2 .

Решить неравенство 2 2 x – 3·2 x + 2 ≤ 0

Обозначим 2 х через у, получим неравенство у 2 – 3у + 2 ≤ 0, решим это квадратное неравенство.

у 2 – 3у +2 = 0,
у 1 = 1 и у 2 = 2.

Ветви параболы направлены вверх, изобразим график:

Тогда решением неравенства будет неравенство 1 < у < 2, вернемся к нашей переменной х и получим неравенство 1< 2 х < 2, решая которое и найдем ответ 0 < x < 1.

Ответ: (0; 1) .

Пример 3 . Решите неравенство 5 x +1 – 3 x +2 < 2·5 x – 2·3 x –1
Соберем выражения с одинаковыми основаниями в одной части неравенства

5 x +1 – 2·5 x < 3 x +2 – 2·3 x –1

Вынесем в левой части неравенства за скобки 5 x , а в правой части неравенства 3 х и получим неравенство

5 х (5 – 2) < 3 х (9 – 2/3),
3·5 х < (25/3)·3 х

Разделим обе части неравенства на выражение 3·3 х, знак неравенства не изменится, так как 3·3 х положительное число, получим неравенство:

х < 2 (так как 5/3 > 1).

Ответ: (–∞; 2) .

Если у вас возникнут вопросы по решению показательных неравенств или вы захотите попрактиковаться в решении подобных примеров, записывайтесь ко мне на уроки. Репетитор Валентина Галиневская .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Урок и презентация на тему: "Показательные уравнения и показательные неравенства"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
Интерактивное пособие для 9–11 классов "Тригонометрия"
Интерактивное пособие для 10–11 классов "Логарифмы"

Определение показательных уравнений

Ребята, мы изучили показательные функций, узнали их свойства и построили графики, разобрали примеры уравнений, в которых встречались показательные функции. Сегодня мы будем изучать показательные уравнения и неравенства.

Определение. Уравнения вида: $a^{f(x)}=a^{g(x)}$, где $a>0$, $a≠1$ называются показательными уравнениями.

Вспомнив теоремы, которые мы изучали в теме "Показательная функция", можно ввести новую теорему:
Теорема. Показательное уравнение $a^{f(x)}=a^{g(x)}$, где $a>0$, $a≠1$ равносильно уравнению $f(x)=g(x)$.

Примеры показательных уравнений

Пример.
Решить уравнения:
а) $3^{3x-3}=27$.
б) ${(\frac{2}{3})}^{2x+0,2}=\sqrt{\frac{2}{3}}$.
в) $5^{x^2-6x}=5^{-3x+18}$.
Решение.
а) Мы хорошо знаем, что $27=3^3$.
Перепишем наше уравнение: $3^{3x-3}=3^3$.
Воспользовавшись теоремой выше, получаем, что наше уравнение сводится к уравнению $3х-3=3$, решив это уравнение, получим $х=2$.
Ответ: $х=2$.

Б) $\sqrt{\frac{2}{3}}={(\frac{2}{3})}^{\frac{1}{5}}$.
Тогда наше уравнение можно переписать: ${(\frac{2}{3})}^{2x+0,2}={(\frac{2}{3})}^{\frac{1}{5}}={(\frac{2}{3})}^{0,2}$.
$2х+0,2=0,2$.
$х=0$.
Ответ: $х=0$.

В) Исходное уравнение равносильно уравнению: $x^2-6x=-3x+18$.
$x^2-3x-18=0$.
$(x-6)(x+3)=0$.
$x_1=6$ и $x_2=-3$.
Ответ: $x_1=6$ и $x_2=-3$.

Пример.
Решить уравнение: $\frac{{(0,25)}^{x-0,5}}{\sqrt{4}}=16*{(0,0625)}^{x+1}$.
Решение:
Последовательно выполним ряд действий и приведем обе части нашего уравнения к одинаковым основаниям.
Выполним ряд операций в левой части:
1) ${(0,25)}^{x-0,5}={(\frac{1}{4})}^{x-0,5}$.
2) $\sqrt{4}=4^{\frac{1}{2}}$.
3) $\frac{{(0,25)}^{x-0,5}}{\sqrt{4}}=\frac{{(\frac{1}{4})}^{x-0,5}}{4^{\frac{1}{2}}}= \frac{1}{4^{x-0,5+0,5}}=\frac{1}{4^x}={(\frac{1}{4})}^x$.
Перейдем к правой части:
4) $16=4^2$.
5) ${(0,0625)}^{x+1}=\frac{1}{{16}^{x+1}}=\frac{1}{4^{2x+2}}$.
6) $16*{(0,0625)}^{x+1}=\frac{4^2}{4^{2x+2}}=4^{2-2x-2}=4^{-2x}=\frac{1}{4^{2x}}={(\frac{1}{4})}^{2x}$.
Исходное уравнение равносильно уравнению:
${(\frac{1}{4})}^x={(\frac{1}{4})}^{2x}$.
$x=2x$.
$x=0$.
Ответ: $х=0$.

Пример.
Решить уравнение: $9^x+3^{x+2}-36=0$.
Решение:
Перепишем наше уравнение: ${(3^2)}^x+9*3^x-36=0$.
${(3^x)}^2+9*3^x-36=0$.
Давайте сделаем замену переменных, пусть $a=3^x$.
В новых переменных уравнение примет вид: $a^2+9a-36=0$.
$(a+12)(a-3)=0$.
$a_1=-12$ и $a_2=3$.
Выполним обратную замену переменных: $3^x=-12$ и $3^x=3$.
На прошлом уроке мы узнали, что показательные выражения могут принимать только положительные значения, вспомните график. Значит, первое уравнение не имеет решений, второе уравнение имеет одно решение: $х=1$.
Ответ: $х=1$.

Давайте составим памятку способов решения показательных уравнений:
1. Графический метод. Представляем обе части уравнения в виде функций и строим их графики, находим точки пересечений графиков. (Этим методом мы пользовались на прошлом уроке).
2. Принцип равенства показателей. Принцип основан на том, что два выражения с одинаковыми основаниями равны, тогда и только тогда, когда равны степени (показатели) этих оснований. $a^{f(x)}=a^{g(x)}$ $f(x)=g(x)$.
3. Метод замены переменных. Данный метод стоит применять, если уравнение при замене переменных упрощает свой вид и его гораздо легче решить.

Пример.
Решить систему уравнений: $\begin {cases} {27}^y*3^x=1, \\ 4^{x+y}-2^{x+y}=12. \end {cases}$.
Решение.
Рассмотрим оба уравнения системы по отдельности:
$27^y*3^x=1$.
$3^{3y}*3^x=3^0$.
$3^{3y+x}=3^0$.
$x+3y=0$.
Рассмотрим второе уравнение:
$4^{x+y}-2^{x+y}=12$.
$2^{2(x+y)}-2^{x+y}=12$.
Воспользуемся методом замены переменных, пусть $y=2^{x+y}$.
Тогда уравнение примет вид:
$y^2-y-12=0$.
$(y-4)(y+3)=0$.
$y_1=4$ и $y_2=-3$.
Перейдем к начальным переменным, из первого уравнения получаем $x+y=2$. Второе уравнение не имеет решений. Тогда наша начальная система уравнений, равносильна системе: $\begin {cases} x+3y=0, \\ x+y=2. \end {cases}$.
Вычтем из первого уравнения второе, получим: $\begin {cases} 2y=-2, \\ x+y=2. \end {cases}$.
$\begin {cases} y=-1, \\ x=3. \end {cases}$.
Ответ: $(3;-1)$.

Показательные неравенства

Перейдем к неравенствам. При решении неравенств необходимо обращать внимание на основание степени. Возможны два варианта развития событий при решении неравенств.

Теорема. Если $а>1$, то показательное неравенство $a^{f(x)}>a^{g(x)}$ равносильно неравенству $f(x)>g(x)$.
Если $0a^{g(x)}$ равносильно неравенству $f(x)

Пример.
Решить неравенства:
а) $3^{2x+3}>81$.
б) ${(\frac{1}{4})}^{2x-4} в) ${0,3}^{x^2+6x}≤{0,3}^{4x+15}$.
Решение.
а) $3^{2x+3}>81$.
$3^{2x+3}>3^4$.
Наше неравенство равносильно неравенству:
$2x+3>4$.
$2x>1$.
$x>0,5$.

Б) ${(\frac{1}{4})}^{2x-4} ${(\frac{1}{4})}^{2x-4} В нашем уравнении основание при степени меньше 1, тогда при замене неравенства на эквивалентное необходимо поменять знак.
$2x-4>2$.
$x>3$.

В) Наше неравенство эквивалентно неравенству:
$x^2+6x≥4x+15$.
$x^2+2x-15≥0$.
$(x-3)(x+5)≥0$.
Воспользуемся интервальным методом решения:
Ответ: $(-∞;-5]U" title="Rendered by QuickLaTeX.com">

Группируем степени с одинаковыми основаниями. Удобнее для этого развести их по разные стороны неравенства:

Title="Rendered by QuickLaTeX.com">

Из каждой пары степеней выносим за скобки общий множитель — степень с меньшим показателем. Вынести за скобки общий множитель- значит, каждое слагаемое разделить на этот множитель. При делении степеней с одинаковыми основаниями основание оставляем прежним, а показатели вычитаем:

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Делить можно сразу на 20 (20=4∙5), но практика показывает, что деление в два этапа позволяет избежать возможных ошибок:

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Так как основание 2/5<1, показательная функция

убывает, поэтому знак неравенства между показателями степеней изменяется на противоположный:

Квадратичное неравенство решим методом интервалов . Нули функции, стоящей в левой части неравенства — x1=-1; x2=2. Отмечаем их на числовой прямой.

Для проверки знака возьмем нуль: 0²-0-2=-2, в промежуток, которому принадлежит нуль, ставим «-«. Остальные знаки расставляем в шахматном порядке. Так как решаем неравенство, в котором левая часть меньше нуля, выбираем промежуток со знаком «-«.

Ответ: x ∈ (-1; 2).

Вариант неравенств такого вида — все степени имеют одинаковые основания, но отличаются коэффициентами при x в показателях.

В левой части выносим за скобки степень с наименьшим показателем

Title="Rendered by QuickLaTeX.com">

Пришли к показательному неравенству . Так как основание 7>1, функция

возрастает, знак неравенства между показателями не изменяется:

Чтобы решить это неравенство методом интервалов перенесем все слагаемые в левую часть и приведём дроби к



Copyright © 2024. Портал об устройстве канализации и водосточных труб