Железобетонные лотки

Главный строительный материал клетки. Строительные материалы человеческого организма

Главный строительный материал клетки. Строительные материалы человеческого организма

Как в и любой другой научной сфере, в клеточной биологии встречаются некоторые постулаты, которые в один прекрасный миг оказываются и не постулатами вовсе, а всего лишь теоремами. Так получилось, например, со стволовыми клетками и представлениями учёных о том, на что эти клетки способны.

Биотехнологическая компания Genzyme сделала очень громкое - и пока что спорное - заявление, согласно которому в организме взрослого человека гораздо меньше различных типов стволовых клеток, чем полагалось ранее.

Точнее сказать, Genzyme утверждает, что два наиболее перспективных для лечения всяких сложных заболеваний типа стволовых клеток, на самом деле, - суть одно и то же.

Теперь некоторые подробности.

Стволовыми клетками называются клетки, способные трансформироваться в различные типы биологических тканей в организме. Иными словами, такие клетки являются основным "строительным материалом" для формирования и регенерации организма.

Долгое время учёный мир предполагал, что на создание любых типов ткани способны только эмбриональные стволовые клетки. Что же касается их близких родственников, присутствующих в организме взрослого человека, то их возможности ограничены лишь определёнными типами тканей - в пределах их клеточной специализации.

Эмбриональные стволовые клетки могут образовывать любые типы тканей, в то время, как потенциал взрослых стволовых клеток долгое время считался ограниченным.

Естественно, что полученные из организма человека стволовые клетки можно использовать для лечения болезней, связанных с тяжёлыми повреждениями ткани - в том числе, некоторых сердечных недугов и заболеваний мозга.

В связи с этим в какой-то момент появился термин "терапевтическое клонирование" - то есть, клонирование, нацеленное на получение из эмбрионов (возрастом в 10 дней) этих драгоценных стволовых клеток для последующего выращивания, грубо говоря, биологических "заплат" для повреждённого организма.

Увы, получение этих клеток неизбежно повлекло бы за собой разрушение эмбриона. Как нетрудно понять, эти планы немедленно натолкнулись на яростное сопротивление со стороны противников клонирования как такового, и вообще всех, кто считает, что человеческая жизнь - не то, чтобы игрушка.

С точки зрения всех христианских церквей, например, жизнь человека начинается в момент его зачатия, а не рождения из утробы матери. Иными словами, между уничтожением эмбриона - донора стволовых клеток, абортом и "обычным" убийством для людей религиозных особой разницы нет.

Поэтому учёные искали способы получать стволовые клетки из других источников.

Как уже сказано, долгое время считалось, что стволовые клетки, наличествующие во взрослом организме, универсальными не являются, и способны производить лишь некоторые, специфичные для данного вида клеток, типы живой ткани.

Постепенно, впрочем, выяснилось, что одни и те же клетки могут формировать сразу несколько типов тканей.

А в 2002 году некая Кэтрин Верфэльи (Catherine Verfaillie) из университета Миннесоты (University of Minnesota), объявила об обнаружении некоего универсального типа взрослых стволовых клеток - (multipotent adult progenitor cells - MAPC).

Ещё одним "многообещающим" типом стволовых клеток, по-видимому, являются мезенхимальные стволовые клетки (mesenchymal stem cells - MSC), обнаруженные биотехнологической компанией Osiris Therapeutics.

Да, это тоже было довольно значимым открытием.

Теперь же крупная биотехнологическая компания Genzyme (гигант, как её окрестил New Scientist), утверждает, что и MSC и MAPC - одно и то же.

Как это может быть, спрашивается? А всё очень просто, утверждает доктор Росс Тьюбо (Ross Tubo) из Genzyme. По его мнению, различные научные учреждения (в данном случае - университет Массачусетса и Osiris) просто использовали разное оборудование - потому-то результаты их исследований MSC и MAPC оказались "столь различны меж собой".

Это выяснилось, когда сотрудники Genzyme занялись изучением результатов, полученных другими учёными. Поэтому команда Тьюбо занялась выработкой стандартного способа оценки потенциала взрослых стволовых клеток.

Но сначала у ряда добровольцев взяли фрагменты ткани костного мозга, и, следуя методикам компании Osiris, доктора Верфэльи и других, получила из него стволовые клетки. Как выяснилось, каждый раз на поверхности полученных разными способами клеток наблюдались всё те же 12 протеинов. Больше того, вне зависимости от способа получения клеток, они вели себя одинаково, когда инициировался процесс преображения в нервную или хрящевую ткань.

На основании этих показателей Тьюбо сделал вывод, что речь идёт об одних и тех же клетках.

Есть и ещё одно "но": технология получения MAPC подразумевает, что выращиваемые клетки из костного мозга должны находиться на большом расстоянии друг от друга.

Команде Тьюбо ничего не удалось добиться таким способом, поэтому плотность выращиваемых ими клеток была очень высокой...

Поэтому, по мнению сотрудников компании Athersys, лицензировавшей технологию получения MAPC из костного мозга, Тьюбо на самом деле получили не MAPC, а именно MSC. По мнению сотрудников Athersys, получить MAPC, не отклоняясь от первичной технологии, непросто, но возможно. И тогда эти клетки сильно отличаются от MSC.

А. В. Гроздова, главный редактор журнала «Практическая диетология»

Слово «белок» в переводе с греческого означает «первое, важное». И это неспроста. Белки - основной материал, из которого великий архитектор - природа - строит жизнь. Сама жизнь - это форма существования белковых тел. Ибо каждая клетка живого организма содержит белки, которые служат основным пластическим материалом, из которого строятся ткани человеческого организма. Он делает возможным основные проявления жизни: пищеварение, обмен веществ, сократимость мышц, раздражимость тканей, способность к росту, размножение и даже высшую форму движения материи - мышление.

Белок - строительный материал для организма

Важным элементом рационального питания служит его белковая полноценность. Проявление в организме биологических свойств различных компонентов пищи, особенно витаминов, происходит наиболее полно только на фоне достаточного белкового питания. Процессы синтеза в организме также находятся в зависимости от уровня белкового питания. Так, синтез фосфатидов, играющих важную роль в нормализации жирового и холестеринового обмена, ограничивается или полностью прекращается при недостатке белков в питании.

В организме человека постоянно отмирает и распадается множество клеток. Для того чтобы построить новые клетки взамен старых, опять-таки нужен строительный материал, и прежде всего белок. Из белка строится не только цитоплазма клеток, но и ферменты гормоны и другие биологически активные вещества, регулирующие обмен веществ.

Так, недостаток белка в питании приводит к резкому отставанию развития ребенка и значительным нарушениям в здоровье взрослых: падает трудоспособность, понижается сопротивляемость организма к простудным и инфекционным заболеваниям.

Хотите больше новой информации по вопросам диетологии?
Оформите подписку на информационно-практический журнал «Практическая диетология»!

Что внутри?

В состав белковой молекулы входит несколько основных химических элементов - углерод, водород, кислород, азот, а также сера, фосфор и некоторые другие. Несмотря на это, молекулы белков сложны и бесконечно разнообразны, как разнообразны проявления жизни.

Есть в строении белков одно общее: они состоят из аминокислот. Всего в состав молекул белка их входит 20 наименований. Большая часть аминокислот может образовываться в организме человека из других аминокислот. Такие аминокислоты называют заменимыми.

Однако десять аминокислот не могут синтезироваться (образовываться) в организме, поэтому они называются незаменимыми. Это лизин, лейцин, изолейцин, треонин, триптофан, валин, метионин, фенилаланин, цистеин, аргинин. Они должны обязательно поступать готовыми с пищей и в таких количествах и соотношениях, как это необходимо нам для построения белков нашего тела.

На основе многолетних исследований Всемирная организация здравоохранения (ВОЗ) определила идеальное соотношение незаменимых аминокислот в 1 г пищевого белка (см. табл. № 1). В этот перечень включены и две заменимые АК - цистин и тирозин, так как они могут в известной степени восполнять недостаток незаменимых АК - метионина и фенилаланина.

Источники белка

Больше всего белка содержится в продуктах животного происхождения: в сыре (около 25 г на 100 г продукта), в мясе и рыбе (16-20 г), в яйцах (13 г), в твороге (14 г).

Содержатся белки и в продуктах растительного происхождения (преобладают они в горохе и фасоли ). Однако в большинстве растительных белков заметно не хватает одной или двух незаменимых аминокислот. Так, белок пшеницы содержит лишь половину требуемого лизина, а в белке картофеля или гороха недостает примерно трети метионина и цистина. Кроме того, растительные белки хуже усваиваются: не на 95-96 %, как белки мяса, рыбы, яиц, молока, а лишь на 80 % (овощи) и даже на 70 % (бобовые, картофель). Неполноценными считаются белки круп и хлеба.

Вот почему современная наука о питании предостерегает от увлечения вегетарианством. Длительное употребление растительной пищи неизбежно ведет к дисбалансу аминокислот, что отрицательно сказывается на многих функциях организма, в том числе на умственной деятельности.

Оказывается, что такой вполне доступный продукт, как рыба, имеет более высокое содержание незаменимой аминокислоты - лизина, чем даже яичный белок. Среднее содержание лизина в рыбных продуктах в 8 раз выше, чем в хлебе. Характерно, что в белках рыбы содержание лизина повышается к моменту ее нереста, причем оно выше у самцов, чем у самок. Высокое содержание лизина делает рыбные продукты весьма ценным добавлением, например, к хлебу.

Исключительное место среди незаменимых аминокислот занимает метионин. Он предупреждает и лечит атеросклероз, регулирует деятельность надпочечников. Суточная потребность человека в метионине составляет 2,2 г. «Королем метионина» назвал академик А. А. Покровский творог. «Королевой метионина» можно назвать рыбу. Судите сами: в 100 г творога содержится 495 мг метионина, а в 100 г трески - 480 мг.

Для удовлетворения потребности организма человека в таких аминокислотах, как лизин, изолейцин, валин и триптофан, ему необходимо употреблять в пищу 200-300 г рыбы, а для удовлетворения потребности в лейцине и метионине - почти 800 г.

Что важнее?

Вернемся к вопросу, волнующему ученых многие десятилетия: каким белкам следует отдавать предпочтение - животным или растительным. Доказано, что человеку полезно чередовать в рационе питания и мясо, и рыбу, и растительную пищу. Люди же, питающиеся главным образом растительной пищей, лишают тем самым свой организм жизненно необходимых веществ - белков.

Наиболее приемлемый вариант - сочетание животных и растительных белков. По мнению авторов научно-популярной литературы о кулинарном искусстве Н. И. Ковалева и В. В. Усова, биологически ценным является сочетание мяса с картофелем (70:30), мяса с гречневой кашей (50:50). В среднем доля животных белков должна составлять для взрослого человека 55 %. Знание биологической ценности различных продуктов позволяет их комбинировать. Так, например, гречневая крупа содержит белок, в котором мало некоторых важных для организма аминокислот, но при употреблении гречневой каши с молоком этот недостаток восполняется. Еще меньше нужных аминокислот имеется в белках пшена, но если в суточном пищевом рационе человека содержатся мясо, картофель, сыр и другие продукты, то в результате получается смесь белков, удовлетворяющая потребности организма.

Не стоит забывать еще один не менее важный фактор приема пищи, обогащенной белком, - это время приема пищи. Установлено, что один белок тем лучше дополняет другой, чем меньше разрыв во времени между приемом пищи, их содержащей. Если человек съедает бутерброд, состоящий из одной части сыра и трех частей хлеба, то биологическая ценность белков в этом случае будет составлять около 76 %. Если эти же продукты съесть не одновременно, а друг за другом - сначала хлеб, затем сыр (или наоборот), то биологическая ценность их белков составит всего лишь 67 %.

Кулинарными изделиями, удачными по сочетанию белков, являются также бутерброды с мясом, вареники и ватрушки с творогом, пирожки с мясом или рыбой, супы молочные с лапшой и ряд других блюд.

Каша - мать наша

С точки зрения содержания белков определенный интерес представляет каша, хотя белки большинства круп относятся к неполноценным. В народе не зря говорят, что каша - мать наша.

Однако не всякая каша ценна для питания. Например, о гречневой говорят обычно, что она «сама себя хвалит». Это действительно так: по количеству белка и по его аминокислотному составу она стоит на одном из первых мест среди других крупяных блюд. Правда, и овсяная каша в этом отношении не уступает гречневой. Менее ценны по составу белков каши из ячменных круп (ячневой, перловой) и пшена. Если утилизация белка гречневой каши равна 45 %, то овсяной - 44 %, риса - 41 %, манной - 38 %, пшена - 32 %.

Но, оказывается, суть заключается не только в биологической ценности круп. Надо еще уметь варить кашу. Дело это вроде бы на первый взгляд нехитрое. Все знают, что особенно вкусной получается каша, сваренная на молоке. Однако такой способ приготовления имеет свои негативные стороны. Парадокс заключается в том, что молоко содержит сахар (лактозу), который при высокой температуре вступает в реакцию с аминокислотами белков круп, т. е. попросту «блокирует» их и снижает тем самым степень утилизации белка в организме. В результате теряется до 50 % самых ценных аминокислот - лизина и метионина. При этом потери их возрастают по мере увеличения продолжительности нагревания каши. Ну а если уж захочется варить на молоке, то для приготовления жидких и вязких каш с молоком надо крупу сначала довести до готовности в кипящей воде, а потом уже добавлять в кашу молоко.

Для того чтобы белки молока обогатили белки гречневой и овсяной круп, соотношение крупы и молока должно быть соответственно 60 и 220 г. А вот белки пшенной или перловой круп становятся более ценными, если их комбинировать с белками куриных яиц. Для этого надо вначале сварить пшенную или перловую рассыпчатую кашу, а затем заправить ее маслом и посыпать рублеными, сваренными вкрутую яйцами.

Точно так же биологическая ценность смеси белков (1 часть молока и 3 части картофеля) при одновременном их потреблении составляет 86 %, а при разновременном - 81%.

Примером такого же сложного, многокомпонентного блюда с высокой утилизацией белка могут служить тушеные блюда из мяса с овощами (говядина духовая, рагу и др.). При этом выяснилась очень любопытная особенность этих блюд: если мясо тушить или варить вместе с овощами, то усвояемость белков будет выше и утилизируются они организмом лучше, чем при тушении или варке мяса и овощей отдельно.

В статье использованы материалы книг: «Рассказы о тайнах домашней кухни» (Н. И. Ковалев, В. В. Усов, М., 1991 г.), «Рассказы о русской кухне» (Н. И. Ковалев, М., 1992 г.), «Технология приготовления пищи» (Н. И. Ковалев, М. Н. Куткина, В. А. Кравцова, М., 2008 г.).

Основной структуроной единицей строения живого является клетка. Клетка - строительный материал для тканей, о чем свидетельствует клеточная теория. Деятельность организма - сумма жизнедеятельности отдельных клеток.

Элементарная единица всего живого, поэтому ей присущи свойства живых организмов: высокоупорядоченное строение, обмен веществ, раздражимость, рост, развитие, размножение, регенерация и другие свойства.

Строение.

Снаружи клетка покрыта клеточной мембраной, отделяющей клетку от внешней среды. Она выполняет следующие функции: защитную, разграничительную, рецепторную (восприятие сигналов внешней среды), транспортную.

Цитоплазма образует ряд специфических структур. Это межклеточные соединения, микроворсинки, реснички, клеточные отростки. Межклеточные соединения (контакты) подразделяются на простые и сложные. При простом соединении цитоплазмы соседних клеток формируют выросты, которые соединяют клетки. Между цитоплазмами всегда сохраняется межклеточная щель. При сложных соединениях клетки соединяются с помощью волокон, а расстояния между клетками почти нет. Микроворсинки - это лишенные органоидов пальцевидные выросты клетки. Реснички и жгутики выполняют функцию движения.

Митохондрии содержат вещества, богатые энергией, участвуют в процессах клеточного дыхания и преобразования энергии в форму, доступную для использования клеткой. Количество, размеры и расположение митохондрий зависит от функции клетки, ее потребности в энергии. Митохондрии содержат собственную ДНК. Около 2% ДНК клетки содержится в митохондриях. В рибосомах образуются клеточные белки. Рибосомы участвуют в синтезе белка, присутствуют во всех клетках человека, за исключением зрелых эритроцитов. Рибосомы могут свободно располагаться в цитоплазме. Они синтезируют белок, необходимый для жизнедеятельности самой клетки. Синтез белка связан с процессом транскрипции - переписывания информации, хранящейся в ДНК.

Ядро - важнейший органоид клетки: в нем содержится особое вещество хроматин, из которого перед делением клетки образуются нитевидные хромосомы - носители наследственных признаков и свойств человека. В состав хроматина входят ДНК и небольшое количество РНК. В делящемся ядре хроматин спирализуется, в результате чего становятся видимыми хромосомы. Ядрышко (одно или несколько) - плотное округлое тельце, размеры которого тем больше, чем интенсивнее протекает белковый синтез. В ядрышке образуются рибосомы.

Клетка состоит из цитоплазмы и ядра, а снаружи покрыта мембраной(3), через которую происходит обмен веществ между клетками. Цитоплазма(4) - вязкое полужидкое вещество, включающее в себя органоиды, выполняющие разные функции. Митохондрии(7) выделяют энергию, сеть канальцев(5) - это «дорога», которая обеспечивает обмен веществ между органоидами в клетке, рибосомы(2) - место образования белков, клеточный центр(1) используется клеткой при делении, ядро(8) содержит хроматин. В ядре клетки также выделяют ядрышко(6).

Состав.

Клетки организма человека состоят из разнообразных химических соединений неорганической и органической природы. К неорганическим веществам клетки относятся вода и соли. Вода составляет до 80% массы клетки. Она растворяет вещества, участвующие в химических реакциях: перености питательные вещества, выводит из клетки отработанные и вредные соединения. Минеральные соли - хлорид натрия, хлорид калия и др. - играют важную роль в распределении воды между клетками и межклеточным веществом. Отдельные химические элементы, такие, как кислород, водород, азот, сера, железо, магний, цинк, иод, фосфор, участвуют в создании жизненно важных органических соединений.

Органические соединения образуют до 20-30% массы каждой клетки. Среди органических соединений наибольшее значение имеют углеводы, жиры, белки и нуклеиновые кислоты.

Углеводы состоят из углерода, водорода и кислорода. К углеводам относятся глюкоза, животный крахмал - гликоген. Многие углеводы хорошо растворимы в воде и являются основным источником энергии для осуществления всех жизненных процессов. При распаде 1 г углеводов освобождается 17,2 кДж энергии.

Жиры образованы теми же химическими элементами, что и углеводы. Жиры нерастворимы в воде. Они входят в состав клеточных мембран. Жиры также служат запасным источником энергии в организме. При полном расщиплении 1 г жира освобождается 39,1 кДж энергии.

Белки являются основными веществами клетки. Белки - самые сложные из встречающихся в природе органических веществ, хотя и состоят из относительно небольшого количества химических элементов - углерод, водород, кислород, азот, сера. Молекула белка имеет большие размеры и представляет собой цепь, состоящую из десятков и сотен более простых соединений - аминокислот. Белки служат главным строительным материалом. Они участвуют в формировании мембран клетки, ядра, цитоплазмы, органоидов. Многие белки выполняют роль ускорителей течения химических реакций - ферментов. Белки имеют разнообразное строение. Только в одной клетке насчитывается до 1000 разных белков.

Нуклеиновые кислоты образуются в клеточном ядре. С этим связано их название (от лат. «нуклеус» - ядро). Они состоят из углерода, водорода и фосфора. Нуклеиновые кислоты бывают двух типов - дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). ДНК находятся в основном в хромосомах клеток. ДНК определяет состав белков клетки и передачу наследственных признаков и свойств от родителей к потомству. Функции РНК связаны с образованием характерных для этой клетки белков.

Жизнедеятельность.

В клетке происходит биосинтез (создание сложных органических соединений), обмен веществ между клеткой и окружающей средой, в результате которого состав клетки постоянно обновляется: одни вещества в них образуются, другие разрушаются. Клетка также способна реагировать на внешние и внутренние воздействия - раздражители называется раздражимостью. Одним из важнейших видов жизнедеятельности клетки является ее способность к размножению.

С помощью размножения наш организм развивается, растет, обновляется. В основе размножения организма лежит размножение клеток. Существует два способа размножения - прямое и непрямое. При прямом делении ядро клетки без особых изменений делится на две части, но такое в организме случается крайне редко. Обычно клетки делятся непрямым способом. Это сложный процесс, состоящий из нескольких фаз. Деление происходит примерно в течение 0.5 часов. При делении клеток особое вещество - хроматин передается и дочерней клетке, наследственный материал клетки точно и полно распределяется. Поэтому дочерние клетки так похожи на материнскую.

Таким образом, клетка обладает рядом жизненных свойств: обменом веществ, раздражимостью, ростом и размножением, подвижностью, на основе которых осуществляется функции целого организма.

Клетки - строительный материал тела. Из них состоят ткани, железы, системы и, наконец, организм.

Клетки

Клетки бывают разных форм и размеров, но для всех из них есть общая схема строения.

Клетка состоит из протоплазмы, бесцветного, прозрачного желеподобного вещества, состоящего на 70% из воды и из разных органических и неорганических веществ. Большинство клеток состоят из трех основных частей: внешняя оболочка, называемая мембраной, центр - ядро и полужидкая прослойка - цитоплазма.

  1. Клеточная мембрана состоит из жиров и протеинов; она полупроницаема, т.е. пропускает такие вещества, как кислород и оксид углерода.
  2. Ядро состоит из особой протоплазмы, называемой нуклеоплазмой. Ядро часто называют «информационным центром» клетки, поскольку в нем содержится вся информация о росте, развитии и функционировании клетки в форме ДНК (дезоксирибонуклеиновая кислота). В ДНК содержится материал, необходимый для развития хромосом, которые несут наследственную информацию от материнской клетки к дочерней. В клетках человека 46 хромосом, по 23 от каждого родителя. Ядро окружено мембраной, которая отделяет его от других структур клетки.
  3. В цитоплазме находится множество структур, называемых оргаиеллами, или «маленькими органами», в число которых входят: митохондрии, рибосомы, аппарат Гольджи, лизосомы, эндоплазматическая сеть и центриоли:
  • Митохондрии - сферические, продолговатые структуры, которые часто именуют «энергетическими центрами», поскольку они обеспечивают клетку силой, необходимой для производства энергии.
  • Рибосомы - гранулярные образования, источник протеина, необходимого клетке для роста и восстановления.
  • Аппарат Гольджи состоит из 4-8 соединенных между собой мешочков, которые производят, сортируют и поставляют протеины в другие части клетки, для которых они являются источником энергии.
  • Лизосомы - сферические структуры, которые вырабатывают вещества для избавления от поврежденных или изношенных частей клетки. Они являются «очистителями» клетки.
  • Эндоплазматическая сеть - сеть каналов, по которым вещества транспортируются внутри клетки.
  • Центриоли - две тонкие цилиндрические структуры, расположенные под прямым углом. Они участвуют в формировании новых клеток.

Клетки не существуют самостоятельно; они работают в группах из подобных клеток - тканях.

Ткани

Эпителиальная ткань

Из эпителиальной ткани состоят стенки и покровы многих органов и сосудов; различают два ее типа: простая и сложная.

Простая эпителиальная ткань состоит из одного слоя клеток, которые бывают четырех видов:

  • Чешуйчатая: плоские клетки лежат шкалообразно, край к краю, в ряд, подобно кафельному полу. Чешуйчатый покров встречается у частей тела, которые мало подвержены износу и повреждению, например стенки альвеол легких в респираторной системе и стенки сердца, кровеносные и лимфатические сосуды в кровеносной системе.
  • Кубовидная: кубические клетки, расположенные в ряд, формируют стенки некоторых желез. Эта ткань пропускает жидкость в процессе секреции, например при выделении пота из потовой железы.
  • Столбчатая: ряд высоких клеток, которые формируют стенки многих органов пищеварительной и мочевыделительной систем. Среди столбчатых клеток - кубкообразные, которые производят водянистую жидкость - слизь.
  • Реснитчатая: одинарный слой чешуйчатых, кубовидных или столбчатых клеток, имеющих выступы, называемые ресничками. Все реснички непрерывно совершают волнообразные движения в одну сторону, что позволяет веществам, например слизи или ненужным субстанциям, продвигаться по ним. Из такой ткани сформированы стенки органов дыхательной системы и репродуктивных органов. 2. Сложная эпителиальная ткань состоит из множества слоев клеток и бывает двух основных видов.

Слоистая - множество слоев чешуйчатых, кубовидных или столбчатых клеток, из которых формируется защитный слой. Клетки либо сухие и затвердевшие, либо влажные и мягкие. В первом случае клетки ороговевшие, т.е. они высохли, и получился волокнистый протеин - кератин. Мягкие клетки - не ороговевшие. Примеры твердых клеток: верхний слой кожи, волосы и ногти. Покровы из мягких клеток -слизистая оболочка рта и язык.
Переходная - по строению схожа с неороговевшим слоистым эпителием, но клетки более крупные и округлые. Это делает ткань эластичной; из нее образованы такие органы, как мочевой пузырь, то есть те, которые должны растягиваться.

Как простой, так и сложный эпителий , должны прикрепляться к соединительной ткани. Место соединения двух тканей известно как нижняя мембрана.

Соединительная ткань

Бывает твердой, полутвердой и жидкой. Насчитывают 8 видов соединительной ткани: ареолярная, жировая, лимфатическая, эластичная, фиброзная, хрящевая, костная и кровяная.

  1. Ареолярная ткань - полутвердая, проницаемая, находится по всему телу, являясь связующей и опорной для других тканей. Она состоит из протеиновых волокон коллагена, эластина и ретикулина, которые обеспечивают ее силу, эластичность и прочность.
  2. Жировая ткань - полутвердая, присутствует там же, где и ареолярная, формируя изоляционный подкожный слой, который способствует сохранению телом тепла.
  3. Лимфатическая ткань - полутвердая, содержащая клетки, которые защищают организм, поглощая бактерии. Лимфатическая ткань формирует те органы, которые ответственны за контроль здоровья организма.
  4. Эластичная ткань - полутвердая, является основой эластичных волокон, которые могут растягиваться и при необходимости восстанавливать форму. Примером является желудок.
  5. Фиброзная ткань - прочная и твердая, состоящая из соединительных волокон из протеина коллагена. Из этой ткани образованы сухожилия, которые соединяют мышцы и кости, и связки, соединяющие кости между собой.
  6. Хрящевая ткань - твердая, обеспечивающая связь и защиту в форме гиалиновых хрящей, соединяющих кости с суставами, волокнистых хрящей, соединяющих кости с позвоночником, и эластичных хрящей уха.
  7. Костная ткань - твердая. Из нее состоят твердый, плотный компактный слой кости и несколько менее плотное губчатое вещество кости, которые вместе формируют костную систему.
  8. Кровь - жидкое вещество, состоящее на 55% из плазмы и на 45% из клеток. Плазма составляет основную жидкую массу крови, а клетки в ней выполняют защитную и соединительную функции.

Мышечная ткань

Мышечная ткань обеспечивает движение тела. Различают скелетную, висцеральную и кардиальную виды мышечной ткани.

  1. Скелетная мышечная ткань - бороздчатая. Она отвечает за сознательное движение тела, например движение при ходьбе.
  2. Висцеральная мышечная ткань - гладкая. Она ответственна за непроизвольные движения, такие как передвижение пищи по пищеварительной системе.
  3. Сердечная мышечная ткань обеспечивает пульсацию сердца - сердцебиение.

Нервная ткань

Нервная ткань выглядит как пучки волокон; она составлена клетками двух видов: нейронами и нейроглиями. Нейроны - длинные, чувствительные клетки, которые принимают сигналы и реагируют на них. Нейроглии поддерживают и защищают нейроны.

Органы и железы

В организме ткани разных видов соединяются и образуют органы и железы. Органы имеют особое строение и функции; они составлены тканями двух или более видов. К органам относятся сердце, легкие, печень, мозг и желудок. Железы состоят из эпителиальной ткани и вырабатывают особые вещества. Различают два типа желез: эндокринные и экзокринньте. Эндокринные железы называют железами внутренней секреции, т.к. они выбрасывают вырабатываемые вещества - гормоны - непосредственно в кровь. Экзокринные (железы внешней секреции) - в каналы, например, пот из соответствующих желез по соответствующим каналам доходит до поверхности кожи.

Системы организма

Группы связанных между собой органов и желез, которые выполняют сходные функции, формируют системы мы организма. К ним относятся: покровная, скелетная, мышечная, респираторная (дыхательная), кровеносная (циркуляторная), пищеварительная, мочеполовая, нервная и эндокринная.

Организм

В организме все системы работают сообща, обеспечивая жизнь человека.

Размножение

Мейоз : новый организм образуется при слиянии мужской спермы и женской яйцеклетки. И в яйцеклетке, и в сперме содержится по 23 хромосомы, в целой клетке - в два раза больше. Когда происходит оплодотворение, яйцеклетка и сперматозоид сливаются, образуя зиготу, у которой
46 хромосом (по 23 от каждого из родителей). Зигота делится (митоз), и формируется эмбрион, зародыш и, наконец, человек. В процессе этого развития клетки приобретают индивидуальные функции (некоторые из них становятся мышечными, другие костными и т.д.).

Митоз - простое деление клеток - продолжается на протяжении всей жизни. Существуют четыре стадии митоза: профаза, метафаза, анафаза и телофаза.

  1. Во время профазы делится каждая из двух центриолей клетки, при этом двигаясь в противоположные части клетки. В то же самое время хромосомы в ядре образуют пары, а мембрана ядра начинает разрушаться.
  2. Во время метафазы хромосомы размещаются по оси клетки между центриолями, одновременно с этим исчезает защитная мембрана ядра.
    Во время анафазы продолжается раздвижение центриолей. Отдельные хромосомы начинают движение в противоположных направлениях, следуя за центриолями. Цитоплазма в центре клетки суживается, и клетка сжимается. Процесс деления клетки называется цитокинезом.
  3. Во время телофазы цитоплазма продолжает сжиматься, пока не образуются две идентичные дочерние клетки. Вокруг хромосом формируется новая защитная мембрана, а у каждой новой клетки - по одной паре центриолей. Сразу после деления в образовавшихся дочерних клетках недостаточно органелл, но по мере роста, называемого интерфазой, они достраиваются, перед тем как клетки снова поделятся.

Частота деления клетки зависит от ее вида, к примеру, клетки кожи размножаются быстрее, чем костные.

Выделение

Ненужные вещества образуются в результате дыхания и обмена веществ и должны быть удалены из клетки. Процесс их удаления из клетки происходит по той же схеме, что и впитывание питательных веществ.

Движение

Маленькие волоски (реснички) некоторых клеток совершают движения, а целые кровяные клетки двигаются по всему организму.

Чувствительность

Клетки играют огромную роль в формировании тканей, желез, органов и систем, которые мы будем подробно изучать, продолжая наше путешествие по организму.

Возможные нарушения

Болезни возникают в результате разрушения клеток. С развитием болезни это отражается на тканях, органах и системах и может оказать влияние на весь организм.

Клетки могут разрушаться по ряду причин: генетических (наследственные заболевания), дегенеративных (при старении), зависящих от окружающей среды, например при слишком высоких температурах, или химических (отравления).

  • Вирусы могут существовать только в живых клетках, которые они захватывают и в которых размножаются, вызывая инфекции, например простудные (вирус герпеса).
  • Бактерии могут жить и вне тела и делятся на патогенные и непатогенные. Патогенные бактерии вредны и вызывают заболевания, такие как импетиго, а непатогенные безвредны: они поддерживают здоровье организма. Некоторые такие бактерии живут на поверхности кожи и защищают ее.
  • Грибки используют для жизни другие клетки; они тоже бывают патогенными и непатогенными. Патогенные грибки - это, например, грибки ног. Некоторые непатогенные грибки используют в производстве антибиотиков, в том числе пенициллина.
  • Черви, насекомые и клещи являются возбудителями заболеваний. К ним относятся глисты, блохи, вши, чесоточные клещи.

Микробы заразны, т.е. могут передаваться от человека к человеку в процессе инфицирования. Заражение может произойти при личном контакте, например прикосновении, или при контакте с инфицированным инструментом, таким как щетка для волос. При болезни могут проявляться симптомы: воспаление, жар, отеки, аллергические реакции и опухоли.

  • Воспаление - краснота, жар, отек, боль и утеря способности нормально функционировать.
  • Жар - повышенная температура тела.
  • Отек - припухлость в результате избыточного количества жидкости в ткани.
  • Опухоль - аномальное разрастание ткани. Может быть доброкачественной (неопасной) и злокачественной (может прогрессировать, приводя к летальному исходу).

Заболевания можно классифицировать, разделяя на локальные и системные, наследственные и приобретенные, острые и хронические.

  • Локальные - болезни, при которых затронута определенная часть или зона организма.
  • Системные - болезни, при которых поражен весь организм или несколько его частей.
  • Наследственные заболевания есть уже при рождении.
  • Приобретенные заболевания развиваются после рождения.
  • Острые - заболевания, которые возникают внезапно и быстро проходят.
  • Хронические болезни долговременны.

Жидкость

Человеческий организм на 75% состоит из воды. Большая часть этой воды, находящаяся в клетках, называется внутриклеточной жидкостью. Остальная вода содержится в крови и слизи и называется внеклеточной жидкостью. Количество воды в организме связано с содержанием в нем жировой ткани, а также от пола и возраста. В жировых клетках не содержится вода, поэтому в организме худых людей процентное содержание воды выше, чем у тех, у кого большая жировая прослойка. Кроме того, у женщин обычно больше жировой ткани, чем у мужчин. С возрастом содержание воды уменьшается (больше всего воды в организмах младенцев). Большую часть воды обеспечивают еда и питье. Другой источник воды - диссимиляция в процессе обмена веществ. Ежедневная потребность человека в воде - около 1,5 литра, т.е. столько же, сколько организм теряет за день. Вода уходит из организма с мочой, фекалиями, потом и при дыхании. Если тело теряет больше воды, чем получает, происходит обезвоживание. Баланс воды в организме регулируется жаждой. Когда организм обезвоживается, во рту возникает ощущение сухости. Мозг реагирует на этот сигнал жаждой. Возникает желание пить, чтобы восстановить баланс жидкости в организме.

Отдых

Каждый день есть время, когда человек может спать. Сон - это отдых для тела и мозга. Во время сна тело частично находится в сознании, большинство его частей временно приостанавливают свою работу. Организму нужно это время полного отдыха, чтобы «подзарядить батарейки». Потребность в сне зависит от возраста, рода деятельности, образа жизни и уровня стресса. Она также индивидуальна для каждого человека и варьирует от 16 часов в сутки для младенцев до 5 для пожилых людей. Сон идет в две фазы: медленный и быстрый. Медленный сон глубокий, без сновидений, он составляет около 80% всего сна. Во время быстрого сна мы видим сны, обычно три-четыре раза за ночь, продолжительностью до часа.

Активность

Наравне со сном организм нуждается в активности, чтобы оставаться здоровым. В организме человека есть клетки, ткани, органы и системы, ответственные за движение, некоторые из них контролируемы. Если человек не пользуется этой возможностью и предпочитает сидячий образ жизни, контролируемые движения становятся ограниченными. В результате недостаточной физической нагрузки может снизиться умственная активность, и фраза «если не будешь пользоваться, потеряешь» относится и к телу, и к разуму. Баланс между отдыхом и активностью разный для разных систем организма и будет рассмотрен в соответствующих главах.

Воздух

Воздух - это смесь атмосферных газов. Он состоит приблизительно на 78% из азота, на 21% из кислорода, и еще 1% составляют другие газы, в том числе углекислый. Кроме этого, воздух содержит определенное количество влаги, примесей, пыли и т.д. Вдыхая, мы употребляем воздух, используя примерно 4% кислорода, содержащегося в нем. В процессе потребления кислорода образуется углекислый газ, поэтому в воздухе, который мы выдыхаем, больше оксида углерода и меньше кислорода. Уровень азота в воздухе не меняется. Кислород необходим для поддержания жизни, без него все существа погибли бы за считанные минуты. Другие компоненты воздуха могут быть вредны для здоровья. Уровень загрязнения воздуха бывает разным; следует по возможнос ти избегать вдыхания загрязненного воздуха. Например, при вдыхании воздуха, содержащего табачный дым, происходит пассивное курение, которое может оказать отрицательное воздействие на организм. Искусство дыхания - то, что чаще всего сильно недооценивают. Оно будет развиваться, чтобы мы могли использовать наиболее полно эту естественную способность.

Возраст

Старение - это прогрессирующее ухудшение способности организма реагировать на поддержание гомеостаза. Клетки способны самовоспроизводится митозом; считается, что в них запрограммировано определенное время, в течение которого они размножаются. Это подтверждается постепенным замедлением и в конце концов прекращением жизненно важных процессов. Еще один фактор, влияюший на процесс старения, -эффект свободных радикалов. Свободные радикалы -токсичные вещества, сопровождающие энергетический обмен. К ним относятся загрязнение, радиация и некоторая пища. Они причиняют вред определенным клеткам, потому что влияют не их способность усваивать питательные вещества и избавляться от продуктов распада. Итак, старение вызывает заметные изменения в анатомии и физиологии человека. В этом процессе постепенного ухудшения усиливается склонность организма к заболеваниям, появляются физические и эмоциональные симптомы, с которыми трудно бороться.

Цвет

Цвет - необходимая часть жизни. Каждая клетка для того, чтобы выжить, нуждается в свете, а в нем содержится цвет. Растениям свет нужен для выработки кислорода, который людям необходим для дыхания. Радиоактивная солнечная энергия дает питание, которое необходимо физическим, эмоциональным и духовным аспектам человеческой жизни. Изменения света влекут за собой изменения в организме. Так, восход солнца пробуждает наш организм, в то время как закат и связанное с ним исчезновение света вызывает сонливость. В свете есть и видимые, и невидимые цвета. Около 40% солнечных лучей несут видимые цвета, которые становятся такими из-за разницы их частот и длин волн. К видимым цветам относятся красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый - цвета радуги. Совмещенные, эти цвета образуют свет.

Свет проникает в организм через кожу и глаза. Глаза, раздражаемые светом, подают сигнал мозгу, который интерпретирует цвета. Кожа ощущает разные колебания, производимые разными цветами. Этот процесс большей частью подсознательный, но его можно вывести на сознательный уровень, тренируя восприятие цветов руками и пальцами, что иногда называют «лечением цветом».

Определенный цвет может производить только один эффект на организм, в зависимости от длины его волн и частоты колебаний, кроме того, разные цвета связывают с разными частями тела. Мы подробнее ознакомимся с ними в следующих главах.

Знание

Знание терминов анатомии и физиологии поможет вам лучше узнать человеческий организм.

Анатомия относится к строению, и есть специальные термины, которыми обозначают анатомические понятия:

  • Передний - находящийся в передней части корпуса
  • Задний - находящийся в задней части корпуса
  • Нижний - относящийся к нижней части тела
  • Верхний - расположенный выше
  • Внешний - находящийся снаружи организма
  • Внутренний - находящийся внутри тела
  • Лежащий навзничь - опрокинувшийся на спину, вверх лицом
  • Лежащий ничком - размещенный лицом вниз
  • Глубокий - находящийся под поверхностью
  • Поверхностный - лежащий у поверхности
  • Продольный - расположенный по длине
  • Поперечный - лежащий поперек
  • Средняя линия - центральная линия тела, от макушки до пальцев ног
  • Срединный - расположенный посередине
  • Боковой - удаленный от середины
  • Периферический - максимально удаленный от прикрепления
  • Ближний - ближайший к прикреплению

Физиология относится к функционированию.

В ней используются следующие термины:

  • Гистология - клетки и ткани
  • Дерматология - покровная система
  • Остеология - скелетная система
  • Миология - мышечная система
  • Кардиология - сердце
  • Гематология - кровь
  • Гастроэнтерология - пищеварительная система
  • Гинекология - женская репродуктивная система
  • Нефрология - мочевыделительная система
  • Неврология - нервная система
  • Эндокринология - выделительная система

Специальный уход

Гомеостаз - это состояние, при котором клетки, ткани, органы, железы, системы органов работают в гармонии с собой и друг с другом.

Эта совместная работа обеспечивает наилучшие условия для здоровья отдельных клеток, ее поддержание - необходимое условие для благополучия всего организма. Один из главных факторов, влияющих на гомеостаз, -стресс. Стресс бывает внешним, например колебания температуры, шумы, недостаток кислорода и т.д., или внутренним: боль, волнение, страх и т. д. Организм сам борется с ежедневными стрессами, у него для этого есть эффективные механизмы противодействия. И все же нужно держать ситуацию под контролем, чтобы не произошел дисбаланс. Серьезный дисбаланс, вызванный излишним продолжительным стрессом, может подорвать здоровье.

Косметические и оздоровительные процедуры помогают клиенту осознать действие стресса, возможно, вовремя, а дальнейшая терапия и советы специалиста предотвращают возникновение дисбаланса и способствуют поддержанию гомеостаза.