Унитазы

Индивидуальный проект "симметрия в природе". Осевая симметрия в живой природе Симметрия в природе и быту

Индивидуальный проект

Введение

Восхищаясь красотой окружающего мира, мы не задумываемся, что лежит в основе этой красоты.

В о-первых, мы с вами живём в симметричном мире, который обусловлен условиями жизни на планете Земля. Может быть, человек подсознательно понимает, что симметрия это форма устойчивости, а значит существования на нашей планете.

Во-вторых, окружающие человека люди, растения симметричны. Но если посмотреть поближе, то можно увидеть, что фигуры только почти симметричны. Но это не всегда воспринимает глаз человека. Глаз человека постепенно привыкает видеть симметричные объекты. Они воспринимаются, как гармоничные и совершенные.

Трудно найти человека, который не имел бы какого-либо представления о симметрии. В обычной «нематематической» жизни нам часто приходится говорить о симметрии. Только при этом мы чаще используем слова «симметричный», «симметрично расположенный». С симметрией мы встречаемся везде – в природе, технике, искусстве…

В настоящее время наука расширяет свои учения о симметрии. Добавляются новые обширные разделы, такие как цветная симметрия, симметрия многомерных пространств и др. Тема симметрии по–прежнему актуальна.

Гипотеза: Во всем есть симметрия

Цель: рассмотреть примеры применения симметрии в природе

Задачи:

    Найти симметрию в окружающем мире.

    Доказать, действительно ли нас окружают симметричные предметы.

    Определить значение симметрии и ее использование в жизни.

Этапы и организация работы по исследованию :

    Изучение и анализ литературы и источников по теме.

    Обобщение теоретического материала.

    Составление справочного материала (таблицы, диаграммы, словари).

План исследования:

    Симметрия в жизни животных, насекомых и птиц.

    1. Изучить внешний вид насекомых, птиц, животных;

      Сравнить внешний вид бабочек;

    Симметрия в жизни растений.

2.1. Изучить растительный мир – цветы, листья?

2.2. Выяснить, встречается ли симметрия в цветах;

2.3. Проанализировать количество осей симметрии у разных цветов.

    Симметрия у человека

    Значение симметрии и ее использование в жизни.

    Общий вывод.

I . Симметрия в жизни животных, насекомых и птиц

Вот над поляной порхает бабочка. Ее крылышки кажутся совершенно одинаковыми. Как бы для того, чтобы подтвердить это, она садится на цветок, складывает их, и мы видим, что форма одного крыла в точности повторяет форму другого.

Значит, крылья у бабочки одинаковые? Не совсем. Если взять копию правого крыла и заменить ею левое крыло, то точного совпадения не будет: либо яркая расцветка окажется не с той стороны, либо при складывании крылья не будут совпадать.

Когда тебе на глаза попадется птица, внимательно рассмотри ее. Птица так замечательно летает, потому что она обладает симметрией. Иными словами, если мысленно поделить птицу вдоль ее тела, обе половинки окажутся одинаковыми.

Симметричное обычно кажется нам красивым. Это можно объяснить тем, что одна часть уравновешивает другую.

По спокойной глади небольшого озерка грациозно передвигается лебедь, - вдруг он остановился, замер. И в воде можно увидеть отражение этой птицы. Такое отражение можно назвать еще зеркальным. Зеркальное отражение можно получить, если взять зеркало и поставить его вертикально на рисунок так, чтобы край зеркала прошел ровно посередине рисунка (бабочки, стрекозы). Получается, что половина рисунка вместе с ее отражением в зеркале составляют прежней рисунок.

Предметы, одна из половин которых может быть получена как зеркальное отражение другой половины, называются симметричными, а само изображение – зеркальной симметрией.

Художников, особенно пейзажистов, часто привлекает передача отражений на спокойной глади реки или озера. Вспомним картины «Весна – большая река» И.И. Левитана, «Аленушка» В.М. Васнецова, «Заросший пруд» В.Д. Поленова.

Ярким примером зеркального отражения в нашей многоводной реке может быть отражение церкви. (показ по картинке) и других предметов (домов, деревьев..)

Если мысленно поделить туловище животного вдоль его тела (зайца, собаки, слона….) то обе половинки окажутся одинаковыми, т.е. симметричными. Хотя могут быть небольшие различия в расцветке – окраске животных.

Выводы:

1. Насекомые, птицы и животные – обладают симметрией;

2. Симметричность форм, окраски насекомых, птиц придает красоту;

3. Симметрия служит для равновесия.

    Симметрия в жизни растений

Для листьев характерна зеркальная симметрия. Эта же симметрия встречается и у цветов, однако у них зеркальная симметрия чаще выступает в сочетании с поворотной симметрией. Нередки случаи и переносной симметрии (веточки акации, рябины). Интересно, что в цветочном мире наиболее распространена поворотная симметрия 5-го порядка, которая принципиально невозможна в периодических структурах неживой природы.

Этот факт академик Н. Белов объясняет тем, что ось 5-го порядка - своеобразный инструмент борьбы за существование, "страховка против окаменения, кристаллизации, первым шагом которой была бы их поимка решеткой" Действительно, живой организм не имеет кристаллического строения в том смысле, что даже отдельные его органы не обладают пространственной решеткой. Однако упорядоченные структуры в ней представлены очень широко. Все мы год за годом с приходом весны и все лето до глубокой осени можем любоваться растениями, деревьями, их цветами.

Посмотрим на кленовый лист . Кленовый лист симметричен. Если перегнуть его по среднему вертикальному стебельку-прожилке, то получившиеся части листа совпадут друг с другом. И перед нами две половинки – правая и левая! Можно провести опыт и с зеркалом; отражение в зеркале дополнит половину кленового листа до целого. Кленовый лист обладает зеркальной симметрией, и, если его нарисовать на листке бумаги, то полученная плоская фигура будет иметь ось симметрии.

Дальнейшие поиски были сосредоточены на нахождении симметрии в цветах и плодах растений.

Рассмотрим разрез любого из этих фруктов. В разрезе они представляют собой окружность.

Симметрию можно наблюдать на изображении следующих цветов: цветок одуванчика, цветок мать-и-мачехи, цветок кувшинки, сердцевина ромашки.

Выводы:

    В любом растении можно найти какую-то его часть, обладающую симметрией. Это могут быть листья, цветы, стебли, стволы деревьев, плоды, и более мелкие части, такие как сердцевина цветка, пестик, тычинки и другие.

    Симметрия наиболее характерна для плодов растений и некоторых цветов.

    Стебли растений обладают симметрией.

    Симметрия форм и окраски цветков придаёт им красоту.

    Симметрия у человека


Человеческое тело обладает билатеральной симметрией (внешний облик и строение скелета). Эта симметрия всегда являлась и является основным источником нашего эстетического восхищения хорошо сложенным человеческим телом. Тело человека построено по принципу двусторонней симметрии.

Большинство из нас рассматривает мозг как единую структуру, в действительности он разделён на две половины. Эти две части – два полушария – плотно прилегают друг к другу. В полном соответствии с общей симметрией тела человека каждое полушарие представляет собой почти точное зеркальное отображение другого

Управление основными движениями тела человека и его сенсорными функциями равномерно распределено между двумя полушариями мозга. Левое полушарие контролирует правую сторону мозга, а правое - левую сторону.

Выводы:

Симметрия - это также показатель молодости и здоровья. Мужчины, чьи тела более симметричны, более привлекательны для женщин, чем не симметричные мужчины. Симметричные цветы более привлекательны для пчел, так как у них больше нектара. Симметрия также очень часто является показателем физического здоровья, в то время как ее отсутствие может выделить потенциальное расстройство какой-либо функции или болезнь. Практический врач Александр Трифонов, изучая механизмы возникновения различных заболеваний, пришел к выводу, что причинами наших болезней являются не только и не столько вирусы и прочие вредные факторы среды, сколько генетически обусловленные нарушения конструкции человеческого тела. Симметричные животные живут дольше, чем не симметричные, что также говорит в пользу того, что симметрия это показатель здоровья. Это также и показатель лучшей способности к воспроизводству. Асимметрия лица это показатель старения.

www . arbuz.uz.ru ;

Если взглянуть на любое живое существо, сразу бросается в глаза симметричность устройства организма. Человек: две руки, две ноги, два глаза, два уха и так далее. Каждому виду животных присущ характерный окрас. Если в расцветке фигурирует рисунок, то, как правило, он зеркально дублируется с обеих сторон. Это означает, что существует некая линия, по которой животные и люди могут быть визуально поделены на две идентичные половинки, то есть в основе их геометрического устройства лежит осевая симметрия. Любой живой организм природа создает не хаотично и бессмысленно, а согласно общим законам мироустройства, ведь во Вселенной ничто не имеет чисто эстетического, декоративного назначения. Наличие различных форм также обусловлено закономерной необходимостью

Центральная симметрия в природе

Симметрию можно найти всюду, если пристально присмотреться к окружающей нас действительности. Она присутствует в снежинках, листьях деревьев и трав, насекомых, цветах, животных. Центральная симметрия растений и живых организмов полностью определена влиянием внешней среды, которая до сих пор формирует обличье обитателей планеты Земля

На протяжении веков симметрия остается предметом, который очаровывает философов, астрономов, математиков, художников, архитекторов и физиков. Древние греки были совершенно одержимы ею – и даже сегодня мы, как правило, сталкиваемся с симметрией во всем от планирования расположения нашей мебели до стрижки волос.

Просто имейте в виду: как только вы осознаете это, вы, вероятно, испытаете непреодолимое желание искать симметрию во всем, что видите.

Брокколи романеско

Возможно увидев брокколи романеско в магазине, вы подумали, что это ещё один образец генномодифицированного продукта. Но на самом деле это ещё один пример фрактальной симметрии природы. Каждое соцветие брокколи имеет рисунок логарифмической спирали. Романеско внешне похожа на брокколи, а по вкусу и консистенции – на цветную капусту. Она богата каротиноидами, а также витаминами С и К, что делает её не только красивой, но и здоровой пищей.

Соты

На протяжении тысяч лет люди удивлялись идеальной гексагональной форме сот и спрашивали себя, как пчелы могут инстинктивно создать форму, которую люди могут воспроизвести только с помощью циркуля и линейки. Как и почему пчелы имеют страстное желание создавать шестиугольники? Математики считают, что это идеальная форма, которая позволяет им хранить максимально возможное количество меда, используя минимальное количество воска. В любом случае, все это продукт природы, и это чертовски впечатляет.

Подсолнухи

Подсолнухи могут похвастаться радиальной симметрией и интересным типом симметрии, известной как последовательность Фибоначчи. Последовательность Фибоначчи: 1, 2, 3, 5, 8, 13, 21, 24, 55, 89, 144 и т.д. (каждое число определяется суммой двух предыдущих чисел). Если бы мы не спешили и подсчитали количество семян в подсолнухе, то мы бы обнаружили, что количество спиралей растет по принципам последовательности Фибоначчи. В природе есть очень много растений (в том числе и брокколи романеско), лепестки, семена и листья которых отвечают этой последовательности, поэтому так трудно найти клевер с четырьмя листочками.

Но почему подсолнечник и другие растения соблюдают математические правила? Как и шестиугольники в улье, все это – вопрос эффективности.

Раковина Наутилуса

Помимо растений, некоторые животные, например Наутилус, отвечают последовательности Фибоначчи. Раковина Наутилуса закручивается в «спираль Фибоначчи». Раковина пытается поддерживать одну и ту же пропорциональную форму, что позволяет ей сохранять её на протяжении всей жизни (в отличие от людей, которые меняют пропорции на протяжении жизни). Не все Наутилусы имеют раковину, выстроенную по правилам Фибоначчи, но все они отвечают логарифмической спирали.

Прежде, чем вы позавидуете моллюскам-математикам, вспомните, что они не делают этого специально, просто такая форма наиболее рациональна для них.

Животные

Большинство животных имеют двустороннюю симметрию, что означает, что они могут быть разделены на две одинаковых половинки. Даже люди обладают двусторонней симметрией, и некоторые ученые полагают, что симметрия человека является наиболее важным фактором, который влияет на восприятие нашей красоты. Другими словами, если у вас однобокое лицо, то остается надеяться, что это компенсируется другими хорошими качествами.

Некоторые доходят до полной симметрии в стремлении привлечь партнера, например павлин. Дарвин был положительно раздражен этой птицей, и написал в письме, что «Вид перьев в хвосте павлина, всякий раз, когда я смотрю на него, делает меня больным!» Дарвину, хвост казался обременительным и не имеющим эволюционного смысла, так как он не соответствовал его теории «выживания наиболее приспособленных». Он был в ярости, пока не придумал теорию полового отбора, которая утверждает, что животные развивают определенные функции, чтобы увеличить свои шансы на спаривание. Поэтому павлины имеют различные приспособления для привлечения партнерши.

Паутина

Есть около 5000 типов пауков, и все они создают почти идеальное круговое полотно с радиальными поддерживающими нитями почти на равном расстоянии и спиральной тканью для ловли добычи. Ученые не уверены, почему пауки так любят геометрию, так как испытания показали, что круглое полотно не заманит еду лучше, чем полотно неправильной формы. Ученые предполагают, что радиальная симметрия равномерно распределяет силу удара, когда жертва попадает в сети, в результате чего получается меньше разрывов.

Круги на полях

Дайте паре обманщиков доску, косилки и спасительную темноту, и Вы увидите, что люди тоже создают симметричные формы. Из-за того, что круги на полях отличаются сложностью дизайна и невероятной симметрией, даже после того, как создатели кругов признались и продемонстрировали свое мастерство, многие люди до сих пор верят, что это сделали космические пришельцы.

По мере усложнения кругов все больше проясняется их искусственное происхождение. Нелогично предполагать, что пришельцы будут делать свои сообщения все более трудными, когда мы не смогли расшифровать даже первые из них.

Независимо от того, как они появились, круги на полях приятно рассматривать, главным образом потому, что их геометрия впечатляет.

Снежинки

Даже такие крошечные образования, как снежинки, регулируются законами симметрии, так как большинство снежинок имеет шестигранную симметрию. Это происходит в частности из-за того, как молекулы воды выстраиваются, когда затвердевают (кристаллизуются). Молекулы воды приобретают твердое состояние, образуя слабые водородные связи, они выравниваются в упорядоченном расположении, которое уравновешивает силы притяжения и отталкивания, формируя гексагональную форму снежинки. Но при этом каждая снежинка симметрична, но ни одна снежинка не похожа на другую. Это происходит потому, что падая с неба, каждая снежинка испытывает уникальные атмосферные условия, которые заставляют её кристаллы располагаться определенным образом.

Галактика Млечный Путь

Как мы уже видели, симметрия и математические модели существуют почти везде, но разве эти законы природы ограничиваются нашей планетой? Очевидно, нет. Недавно открыли новую секцию на краю Галактики Млечного Пути, и астрономы считают, что галактика представляет собой почти идеальное зеркальное отражение себя.

Симметрия Солнца-Луны

Если учесть, что Солнце имеет диаметр 1,4 млн. км, а Луна – 3474 км, кажется почти невозможным то, что Луна может блокировать солнечный свет и обеспечивать нам около пяти солнечных затмений каждые два года. Как это получается? Так совпало, что наряду с тем, что ширина Солнца примерно в 400 раз больше, чем Луна, Солнце также в 400 раз дальше. Симметрия обеспечивает то, что Солнце и Луна получаются одного размера, если смотреть с Земли, и поэтому Луна может закрыть Солнце. Конечно, расстояние от Земли до Солнца может увеличиваться, поэтому иногда мы видим кольцевые и неполные затмения. Но каждые один-два года происходит точное выравнивание, и мы становимся свидетелями захватывающих событий, известных как полное солнечное затмение. Астрономы не знают, как часто встречается такая симметрия среди других планет, но они думают, что это довольно редкое явление. Тем не менее, мы не должны предполагать, что мы особенные, так как все это дело случая. Например, каждый год Луна отдаляется примерно на 4 см от Земли, это означает, что миллиарды лет назад каждое солнечное затмение было бы полным затмением. Если и дальше все пойдет так, то полные затмения, в конце концов, исчезнут, и это будет сопровождаться исчезновением кольцевых затмений. Получается, что мы просто находимся в нужном месте в нужное время, чтобы увидеть это явление.

Почему у человека некоторые органы - парные (например, легкие, почки), а другие - в одном экземпляре?

Вначале попробуем ответить на вспомогательный вопрос: почему у человека некоторые части тела симметричны, а другие - нет?

Симметрия - базовое свойство большинства живых существ. Быть симметричным очень удобно. Подумайте сами: если у вас совсех сторон есть глаза, уши, носы, рты и конечности, то вы успеете вовремя почувствовать что-то подозрительное, с какой бы стороны оно ни подкрадывалось, и, в зависимости от того, какое оно, это подозрительное, - съесть его или, наоборот, от него удрать.

Самая безупречная, «самая симметричная» из всех симметрий - сферическая , когда у тела не отличаются верхняя, нижняя, правая, левая, передняя и задняя части, и оно совпадает само с собой при повороте вокруг центра симметрии на любой угол. Однако это возможно только в такой среде, которая сама идеально симметрична во всех направлениях и в которой со всех сторон на тело действуют одни и те же силы. Но на нашей земле подобной среды нет. Существует по крайней мере одна сила - сила тяжести, - которая действует только по одной оси (верх-низ) и не влияет на остальные (вперед-назад, вправо-влево). Она всё тянет вниз. И живым существам приходится к этому приспосабливаться.

Так возникает следующий тип симметрии - радиальная . У радиально-симметричных существ есть верхняя и нижняя части, но правой и левой, передней и задней нет. Они совпадают сами с собой при вращении только вокруг одной оси. К ним относятся, например, морские звезды и гидры. Эти создания малоподвижны и занимаются «тихой охотой» за проплывающей мимо живностью.

Но если какое-то существо собирается вести активный образ жизни, гоняясь за жертвами и удирая от хищников, для него приобретает важность еще одно направление - передне-заднее. Та часть тела, которая находится впереди, когда животное двигается, становится более значимой. Сюда «переползают» все органы чувств, а заодно и нервные узлы, которые анализируют полученную от органов чувств информацию (у некоторых счастливчиков эти узлы потом превратятся в головной мозг). К тому же, спереди должен находиться рот, чтобы успеть ухватить настигнутую добычу. Всё это обычно располагается на отдельном участке тела - голове (у радиально-симметричных животных головы нет в принципе). Так возникает билатеральная (или двусторонняя ) симметрия. У билатерально-симметричного существа отличаются верхняя и нижняя, передняя и задняя части, и только правая и левая идентичны и являются зеркальным отображением друг друга. Этот тип симметрии характерен для большинства животных, включая и человека.

У некоторых животных, например у кольчатых червей, помимо билатеральной есть и еще одна симметрия - метамерная . Их тело (за исключением самой передней части) состоит из одинаковых члеников-метамеров, и если сдвигаться вдоль тела, червь сам с собой «совпадает». У более развитых животных, включая человека, сохраняется слабое «эхо» такой симметрии: в каком-то смысле, наши позвонки и рёбра тоже можно назвать метамерами.

Итак, почему у человека есть парные органы, мы разобрались. Теперь обсудим, откуда взялись непарные.

Для начала попробуем понять: что же является осью симметрии для самых простых, радиально симметричных, примитивных многоклеточных? Ответ простой: это пищеварительная система. Вокруг нее и выстраивается весь организм, и организован он так, чтобы каждая клеточка тела находилась близко к «кормушке» и получала достаточное количество питательных веществ. Представим себе гидру : ее рот симметрично окружен щупальцами, которые загоняют туда добычу, а кишечная полость находится в самой середине организма и является осью, вокруг которой формируется всё остальное тело. Пищеварительная система у таких существ одна по определению, потому что «под нее» и выстраивается весь организм.

Постепенно животные усложнялись, и их пищеварительная система тоже становилась всё более совершенной. Кишечник удлинился, чтобы более эффективно переваривать пищу, и поэтому ему пришлось сложиться в несколько раз, чтобы поместиться в брюшной полости. Появились дополнительные органы - печень, желчный пузырь, поджелудочная железа, - которые расположились в организме асимметрично и «подвинули» некоторые другие органы (например, из-за того, что печень расположена справа, правая почка и правый яичник/яичко сдвинуты вниз относительно левого). У человека изо всей пищеварительной системы только рот, глотка, пищевод и анальное отверстие сохранили свое положение на плоскости симметрии организма. Но пищеварительная система и все ее органы так и остались у нас в единственном экземпляре.

Теперь посмотрим на кровеносную систему.

Если животное маленькое, у него нет проблемы с тем, чтобы питательные вещества дошли до каждой клеточки, - ведь все клетки находятся достаточно близко к пищеварительной системе. Но чем больше живое существо, тем острее для него возникает проблема доставки питания до «отдаленных провинций», находящихся на большом расстоянии от кишечника, на периферии тела. Появляется потребность в чём-то, что «кормило» бы эти участки, а кроме этого, соединяло всё тело воедино и позволяло далеко расположенным регионам «общаться» между собой (а у некоторых животных также разносило бы кислород от органов дыхания по всему телу). Так появляется кровеносная система.

Кровеносная система выстраивается вдоль пищеварительной, и поэтому состоит она, в самых примитивных случаях, всего лишь из двух главных сосудов - брюшного и спинного - и нескольких соединяющих их дополнительных. Если существо маленькое и слабоподвижное (как, например, ланцетник), то для того, чтобы кровь двигалась по сосудам, достаточно сокращения самих этих сосудов. Но относительно крупным существам, ведущим более активный образ жизни (например, рыбам), этого мало. Поэтому у них часть брюшного сосуда превращается в специальный мышечный орган, с силой толкающий кровь вперед, - сердце. Поскольку оно возникло на непарном сосуде, то и само оно «одинокое» и непарное. У рыб сердце симметрично само по себе и в теле располагается на плоскости симметрии. Но у наземных животных, в связи с появлением второго круга кровообращения, левая часть сердечной мышцы становится больше правой, и сердце сдвигается в левую сторону, теряя и симметричность своего положения, и свою собственную симметрию.

Вера Башмакова
«Элементы»

Комментарии: 0

    Регулярный ячеистый рисунок можно сделать, если ячейки будут треугольными, квадратными или шестиугольными. Шестиугольная форма больше остальных позволяет сэкономить на стенках, то есть на соты с такими ячейками уйдёт меньше воска. Впервые такую «экономность» пчёл заметили в IV веке н. э., и тогда же было высказано предположение, что пчёлы при постройке сотов «руководствуются математическим планом». Однако, полагают исследователи из Кардиффского университета, инженерная слава пчёл сильно преувеличена: правильная геометрическая форма шестигранных ячеек сотов возникает из-за, действующих на них физических сил, а насекомые тут лишь помощники.

    Предложен вариант непериодичной мозаики, покрывающей плоскость, в котором используются плитки одной формы, но двух различных раскрасок.

    Иэн Стюарт

    На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.

    Каустики - это вездесущие оптические поверхности и кривые, возникающие при отражении и преломлении света. Каустики можно описать как линии или поверхности, вдоль которых концентрируются световые лучи.

    Областное бюджетное профессиональное образовательное учреждение

    «Курский педагогический колледж»

    Проект по предмету

    «МАТЕМАТИКА»

    тема:

    С И М М Е Т Р И Я В ПРИРОДЕ

    Специальность среднего профессионального образования

    44.02.02 Преподавание в начальных классах.

    Выполнила: студентка

    группы 1 Д школьного отделения

    Заикина Яна Александровна

    Проверил: преподаватель математических дисциплин

    Волчкова Наталья Николаевна

    Курск, 2017

    Введение …………………………………………………………………….....................4

    ГЛАВА I . Что такое «симметрия»……………………………......................................6

    1.1.Роль симметрии в нашей жизни………………………………….........................6

    1.2. Что такое симметрия? В иды симметрии..............................................................7

    1.2.1. Центральная симметрия..............................................................................12

    1.2.2. Осевая симметрия........................................................................................12

        1. Зеркальная симметрия ………………….……….......................................14

          Поворотная симметрия................................................................................14

    ГЛАВА II . Симметрия в природе …………………………........................................15

    ………………..................……............15

    2.2. симметрия в живой природе. Асимметрия и симметрия. …...............................18

    2.3. Симметрия растений ……………………….............................................................19

    2.4. Симметрия животных ……………………………...................................................21

    2.5. Симметрия в неживой природе................................................................................21

    2.6. Человек ― существо симметричное …………………...........................................24

    Заключение……………………………………………………….…..….......................26 Список литературы……………..........………………………………..........................27

    Приложение……………………………………………………………………….........28



    ВВЕДЕНИЕ

    Симметрия "...быть прекрасным - значит быть симметричным и соразмерным."

    Платон (древнегреческий философ, 428 – 348 г. до н.э.)

    Среди бесконечного разнообразия форм живой и неживой природы в изобилии встречаются такие совершенные образцы, чей вид неизменно привлекает наш взгляд и ласкает наше внимание. Мы постоянно любуемся прелестью каждого отдельного цветка, мотылька или раковины и всегда пытаемся проникнуть в тайну их красоты. Внимательное наблюдение обнаруживает, что основу красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды ― от простейших до самых сложных.

    Мы выбрали для исследования очень необычную тему: «Симметрия в природе», потому, что она связана с интересующим нас вопросом о гармонии нашего мира.

    Понятие симметрии проходит через всю многовековую историю человеческого творчества. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. В своём проекте я покажу, что законы природы, управляющие неисчерпаемой в своём многообразии картиной явлений, в свою очередь подчиняются принципам симметрии. Мы узнаем, что существует множество видов симметрии, как в растительном, так и в животном мире, но при всём многообразии живых организмов, принцип симметрии действует всегда, и этот факт ещё раз подчёркивает гармоничность нашего мира. В нашей исследовательской работе будет отмечено так же, что помимо симметрии существует понятие и асимметрии. Симметрия лежит в основе вещей и явлений, выражая нечто общее, свойственное разным объектам, тогда как асимметрия связана с индивидуальным воплощением этого общего в конкретном объекте.

    Асимметрию можно рассматривать как разграничительную линию между живой и неживой природой. Для неживой материи характерно преобладание материи, при переходе от неживой к живой материи на микроуровне преобладает асимметрия.

    Было интересно, потому что данная тема затрагивает не только математику, хотя она и лежит в её основе, но и другие областные науки, техники, природы. Симметрия, как мне кажется, является фундаментом природы, представление о котором слагалось в течение десятков, сотен, тысяч поколений людей. Я обратила внимание на то, что во многих вещах, в основе красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды ― от простейших до самых сложных. Можно говорить о симметрии, как о гармонии пропорций, как о «соразмерности», регулярности и упорядоченности.

    Нам это важно, потому что для многих людей математика ― скучная и сложная наука, но для меня математика ― не только цифры, уравнения и решения, но и красота в строении геометрических тел, живых организмов и даже является фундаментом для многих наук.

    Цели исследовательской работы:

      Раскрыть особенности симметрии видов в природе.

      Показать всю привлекательность математики, как науки её взаимосвязь с природой в целом.

      Узнать, присутствует ли симметрия в окружающем нас мире.

      Изучить особенности различных видов симметрии в природе.

    Для достижения поставленной цели, был определен ряд задач:

        1. Проанализировать литературу по исследуемой проблеме;

          Изучить основные виды симметрии ;

          Подбор материала по теме «Симметрия в природе», и его обработка.

          Систематизация и обобщение собранного материала.

    Проблема:

    Как часто встречаются симметричные и несимметричные формы в природе?

    Как симметрия и асимметрия влияют на наше настроение?

    Какова роль симметрии в природе?

    Объектом исследования является понятие «симметрия».

    Предмет исследования:

    Особенности различных видов симметрии в природе.

    Гипотеза исследования состоит в том, чтобы показать важную, исключительную роль принципа симметрии в научном познании мира

    Глава 1. Что такое симметрия?

    1.1. Роль симметрии в нашей жизни

    Симметрия является фундаментальным свойством природы, представление о котором, как отмечал академик Вернадский, «слагалось в течение десятков, сотен, тысяч поколений». «Изучение археологических памятников показывает, что человечество на заре своей культуры уже имело представление о симметрии и осуществляло её в рисунке и в предметах быта. Надо полагать, что применение симметрии в первобытном производстве определялось не только эстетическими мотивами. Но в известной мере и уверенностью человека в большей пригодности для практики правильных форм». Это слова другого нашего замечательного соотечественника, посвятившего изучению симметрии всю свою жизнь, академика А. В. Шубникова (1887 - 1970 гг.)

    Первоначальное понятие о геометрической симметрии как о гармонии пропорций, как о «соразмерности», что и означает в переводе с греческого слова «симметрия», с течением времени приобрело универсальный характер и было осознано как всеобщая идея неизменности относительно некоторых преобразований.

    Симметрия воспринимается в нашей жизни и вообще человеком как проявление закономерности, порядка, царящего в природе. Восприятие же закономерного всегда доставляет нам удовольствие, сообщает некоторую уверенность и даже бодрость.

    В нашей жизни мы повседневно, всегда и везде встречаемся с симметрией. Это симметричные предметы и геометрические фигуры, живая природа и зеркальная симметрия и т.д. Итак, «сфера влияния» симметрии поистине безгранична. Природа - наука - искусство. Всюду мы видим противоборство, а часто и единство двух великих начал - симметрии и асимметрии, которые во многом определяют гармонию природы, мудрость науки и красоту искусства. Мы видели, что симметрия форм живой природы обязана своим существованием, прежде всего закону тяготения. Но тяготение - вечный закон природы; значит, вечна и симметрия и она всегда будет ассоциироваться с красотой.

    Симметрия воспринимается нами, как покой, скованность, закономерность, тогда как асимметрия означает движение, свободу, случайность.

    Теперь мы, понаблюдав и изучив специальную литературу, посмотрим, где найдет свое отображение симметрия. Почему симметрия буквально пронизывает весь окружающий нас мир?

    1.2.Что такое симметрия. В иды симметрии

    Существует множество понятий о симметрии.

    Симметрия - это соответствие, неизменность (инвариантность), проявляемых при каких-либо изменениях, преобразованиях (например: положения, энергии, информации, другого). Так, например, сферическая симметрия тела означает, что вид тела не изменится, если его вращать в пространстве на произвольные углы (сохраняя одну точку на месте). Двусторонняя симметрия означает, что правая и левая сторона относительно какой-либо плоскости выглядят одинаково.

    Симметрия. Основное понятие.

    Симметрия - определённый геометрический порядок в расположении сходственных частей тела, имеет непосредственное отношение к характеру. Симметрия является жизненно важным признаком, который отражает особенности строения, образа жизни и поведения животного.

    Симметрия - соразмерность, одинаковость в расположении частей чего-либо по противоположным сторонам от точки, прямой или плоскости, прямой или плоскости.

    Симметрия («соразмерность») - закономерное расположение подобных (одинаковых) частей тела или форм живого организма, совокупности живых организмов относительно центра или оси симметрии.

    При этом подразумевается, что соразмерность – часть гармонии, правильного сочетания частей целого. В физике общепринято выделять две формы симметрии: геометрическую и динамическую. Симметрии, выражающие свойства пространства и времени, относят к геометрической форме симметрии. Примерами геометрических симметрии являются: однородное пространство и время, изотропность пространства, пространственная четность, эквивалентность инерциальных систем отсчета. Симметрии, непосредственно не связанные со свойствами пространства и времени, выражающие свойства определенных физических взаимодействий, относят к динамической форме симметрии. К динамическим симметриям относят симметрии внутренних свойств объектов и процессов, например симметрии электрического заряда. Геометрические и динамические симметрии можно рассматривать еще в одном аспекте, как внешние и внутренние симметрии.

    Отсутствие или нарушение симметрии называют асимметрией или аритмией.

    К основным формам геометрической симметрии относятся:

    зеркальная симметрия;

    осевая симметрия;

    центральная симметрия;

    вращательная симметрия;

    скользящая симметрия;

    точечная симметрия;

    поступательная симметрия;

    винтовая симметрия;

    неизометричная симметрия;

    фрактальные симметрии.

    Кроме этого существует:

    радиальная симметрия;

    прирадиальная симметрия;

    билатеральная симметрия.

    В курсе планиметрии мы познакомились с движениями плоскости, т. е. отображениями плоскости на себя, сохраняющими расстояния между точками. Введем теперь понятие движения пространства. Предварительно разъясним, что понимается под словами отображение пространства на себя. Допустим, что каждой точке М пространства поставлена в соответствие некоторая точка М 1 причем любая точка М 1 пространства оказалась поставленной в соответствие какой-то точке М. Тогда говорят, что задано отображение пространства на себя. Говорят также, что при данном отображении точка М переходит (отображается) в точку М 1 . Под движением пространства понимается отображение пространства на себя, при котором любые две точки А и В переходят (отображаются) в какие-то точки А1 и В 1 так, что А 1 В 1 =АВ. Иными словами, движение пространства - это отображение пространства на себя, сохраняющее расстояния между точками. Примером движения может служить центральная симметрия - отображение пространства на себя, при котором любая точка М переходит в симметричную ей точку М, относительно данного центра О.

    Осевой симметрией с осью а называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей точку М 1 относительно оси а.

    Зеркальной симметрией (симметрией относительно плоскости) называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей относительно плоскости точку М 1 .

    Поворотная симметрия

    Трансляционной симметрией называется многократное повторение одного и того же фрагмента структуры в пространстве или во времени. Примером трансляционной симметрии может служить любой орнамент.

    Однако наряду с привычными формами симметрии существуют и другие виды симметрии:

    Винтовая симметрия - объекта относительно группы преобразований, являющихся преобразования поворота объекта вокруг и его вдоль этой оси.

    Поворотная симметрия предполагает наличие некоторого центра, относительно которого происходит многократный поворот одного итого же структурного фрагмента.

    - термин, означающий симметрию объекта относительно всех или некоторых собственных вращений m -мерного . Собственными вращениями называются разновидности , сохраняющие ориентацию.

    Симметрия в биологии - это закономерное расположение подобных (одинаковых, равных по размеру) частей тела или форм живого организма, совокупности живых организмов относительно центра или . Тип симметрии определяет не только общее строение тела, но и возможность развития систем органов животного. Строение тела многих многоклеточных организмов отражает определённые формы симметрии. Если тело животного можно мысленно разделить на две половины, правую и левую, то такую форму симметрии называют билатеральной. Этот тип симметрии свойственен подавляющему большинству видов, а также человеку. Если тело животного можно мысленно разделить не одной, а несколькими плоскостями симметрии на равные части, то такое животное называют радиально-симметричным. Этот тип симметрии встречается значительно реже.

    Асимметрия - отсутствие симметрии. Иногда этот термин используется для описания организмов, лишённых симметрии первично, в противоположность диссимметрии - вторичной утрате симметрии или отдельных её элементов.

    Понятия симметрии и асимметрии обратны. Чем более симметричен организм, тем менее он асимметричен и наоборот. Небольшое количество организмов полностью асимметричны. При этом следует различать изменчивость формы (например у ) от отсутствия симметрии. В и, в частности, в живой природе симметрия не абсолютна и всегда содержит некоторую степень асимметрии. Например, симметричные при сложении пополам в точности не совпадают.

    У биологических объектов встречаются следующие типы симметрии:

    Сферическая симметрия в трёхмерном пространстве на произвольные углы.

    Аксильная симметрия (радиальная симметрия) - симметрия вращения неопределённого порядка) - симметричность относительно поворотов на произвольный угол вокруг какой-либо оси.

    Симметрия вращения n -ого порядка - симметричность относительно на угол 360°/n вокруг какой-либо оси.

    Двусторонняя ( ) симметрия - симметричность относительно плоскости симметрии (симметрия ).

    Трансляционная симметрия - симметричность относительно в каком-либо направлении на некоторое расстояние (её частный случай у животных - ).

    Триаксиальная асимметрия - отсутствие симметрии по всем трём пространственным осям.

    РАДИАЛЬНАЯ СИММЕТРИЯ

    В о радиальной симметрии говорят, когда через трёхмерное существо проходят одна или более осей симметрии. При этом радиальносимметричные животные могут и не иметь плоскостей симметрии. Так, у Velella имеется ось симметрии второго порядка и нет плоскостей симметриИ

    Обычно через ось симметрии проходят две или более симметрии. Эти плоскости пересекаются по прямой - оси симметрии. Если животное будет вращаться вокруг этой оси на определённый градус, то оно будет отображаться само на себе (совпадать само с собой). Таких осей симметрии может быть несколько (полиаксонная симметрия) или одна (монаксонная симметрия). Полиаксонная симметрия распространена среди (например, ).

    Как правило, у многоклеточных животных два конца (полюса) единственной оси симметрии неравноценны (например, у медуз на одном полюсе (оральном) находится рот, а на противоположном (аборальном) - верхушка колокола. Такая симметрия (вариант радиальной симметрии) в сравнительной анатомии называется одноосновной-гетеропольной. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.

    Радиальная симметрия характерна для многих , а также для большинства . Среди них встречается так называемая , базирующаяся на пяти плоскостях симметрии. У иглокожих радиальная симметрия вторична: их личинки двусторонне симметричны, а у взрослых животных наружная радиальная симметрия нарушается наличием мадрепоровой пластинки.

    Кроме типичной радиальной симметрии существует (две плоскости симметрии, к примеру, у ). Если плоскость симметрии только одна, то симметрия (такую симметрию имеют животные из группы ).

    У часто встречаются радиальносимметричные : 3 плоскости симметрии ( ), 4 плоскости симметрии ( ), 5 плоскостей симметрии ( ), 6 плоскостей симметрии ( ). Цветки с радиальной симметрией называются актноморфные, цветки с билатеральной симметрией - зигоморфные.

    БИЛАТЕРАЛЬНАЯ СИММЕТРИЯ

    (двусторонняя симметрия) - симметрия зеркального отражения, при которой объект имеет одну плоскость симметрии, относительно которой две его половины зеркально симметричны. Если на плоскость симметрии опустить перпендикуляр из точки A и затем из точки О на плоскости симметрии продолжить его на длину AО, то он попадёт в точку A 1 , во всём подобную точке A. Ось симметрии у билатерально симметричных объектов отсутствует. У животных билатеральная симметрия проявляется в схожести или почти полной идентичности левой и правой половин тела. При этом всегда существуют случайные отклонения от симметрии (например, различия в папиллярных линиях, ветвлении сосудов и расположении родинок на правой и левой руках человека). Часто существуют небольшие, но закономерные различия во внешнем строении (например, более развитая мускулатура правой руки у праворуких людей) и более существенные различия между правой и левой половиной тела в расположении . Например, у обычно размещено несимметрично, со смещением влево.

    У животных появление билатеральной симметрии в эволюции связано с ползанием по субстрату (по дну водоема), в связи с чем появляются спинная и брюшная, а также правая и левая половины тела. В целом среди животных билатеральная симметрия более выражена у активно подвижных форм, чем у сидячих.

    Билатеральная симметрия свойственна всем достаточно высокоорганизованным , кроме . В других царствах живых организмов билатеральная симметрия свойственна меньшему числу форм. Среди протистов она характерна для (например, ), некоторых форм , , раковинок многих . У растений билатеральную симметрию имеет обычно не весь организм, а его отдельные части - или . Билатерально симметричные цветки ботаники называют зигоморфными.

    1.2.1. Центральная симметрия

    Введём понятие центральной симметрии: «Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры». Поэтому говорят, что фигура обладает центральной симметрией.

    Понятия центра симметрии в «Началах» Евклида нет, но, однако в 38-ом предложении 6 книги содержится понятие пространственной оси симметрии. Впервые понятие центра симметрии встречается в шестнадцатом веке. В одной из теорем Клавиуса, гласящей: «Если параллелепипед рассекается плоскостью, проходящей через центр, то он разбивается пополам и, наоборот, если параллелепипед рассекается пополам, то плоскость проходит через центр». Лежандр, который впервые ввёл в элементарную геометрию элементы учения о симметрии, показывает, что у прямого параллелепипеда имеются 3 плоскости симметрии, перпендикулярные к рёбрам, а у куба 9 плоскостей симметрии, из которых 3 перпендикулярны к рёбрам, а другие 6 проходят через диагонали граней.

    Примерами фигур, обладающих центральной симметрией, являются окружность и параллелограмм. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма ― точка пересечения его диагоналей. Любая прямая также обладает центральной симметрией. Однако, в отличии от окружности и параллелограмма, которые имеют только один центр симметрии, у прямой их бесконечно много ― любая точка прямой является центром её симметрии. Примером фигуры, не имеющей цента симметрии, является произвольный треугольник.

    В алгебре при изучении чётных и нечётных функций рассматриваются их графики. График чётной функции при построении симметричен относительно оси координат, а график нечётной функции ― относительно начала координат, т.е. точки О. Значит, нечётная функция обладает центральной симметрией, а чётная функция ― осевой.

    Таким образом, две центрально симметричные плоские фигуры всегда можно наложить друг на друга, не выводя их из общей плоскости. Для этого достаточно одну из них повернуть на угол 180 около центра симметрии. Как в случае зеркальной, так и в случае центральной симметрии плоская фигура непременно имеет ось симметрии второго порядка, но в первом случае эта ось лежит в плоскости фигуры, а во втором ― перпендикулярна к этой плоскости.

    1.2.2. Осевая симметрия

    Понятие осевой симметрии предоставлено следующим образом: «Фигура называется симметричной относительно прямой m , если для каждой точки фигуры симметричная ей точка относительно прямой, м также принадлежит этой фигуре. Прямая м называется осью симметрии фигуры». Тогда говорят, что фигура обладает осевой симметрией.

    В более узком смысле осью симметрии называют ось симметрии второго порядка и говорят об «осевой симметрии», которую можно определить так: фигура (или тело) обладает осевой симметрией относительно некоторой оси, если каждой её точке С, соответствует такая принадлежащая этой же фигуре точка Д, что отрезок АВ перпендикулярен к оси, пересекает её и в точке пересечения делится пополам.

    Приведём примеры фигур, обладающих осевой симметрий. У неразвёрнутого угла одна ось симметрии ― прямая, на которой расположена биссектриса угла.

    Равнобедренный (но не равносторонний) треугольник имеет также одну ось симметрии. Прямоугольник и ромб, не являющиеся квадратами, имеют по две оси, а квадрат ― четыре оси симметрии. У окружности их бесконечно много ― любая прямая, проходящая через её центр, является осью симметрии. Имеются фигуры, у которых нет ни одной оси симметрии. К таким фигурам относятся параллелограмм, отличный от прямоугольника, разносторонний треугольник.

    1.2.3. Зеркальная симметрия

    Зеркальной симметрией называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей относительно плоскости а точку М 1 .

    Зеркальная симметрия хорошо известна каждому человеку из повседневного наблюдения. Как показывает само название, зеркальная симметрия связывает любой предмет и его отражение в плоском зеркале. Говорят, что одна фигура (или тело) зеркально симметрично другой, если вместе они образуют зеркально симметричную фигуру (или тело).

    Многие очень любят фотографировать природу. Особенно когда весной разливается река, то на дальних лугах можно увидеть красивую картину, когда в воде отражаются: облака, трава.

    Игрокам в бильярд издавна знакомо действие отражения. Их «зеркала» - это борта игрового поля, а роль луча света исполняют траектории шаров. Ударившись о борт возле угла, шар катится к стороне, расположенной под прямым углом, и, отразившись от неё, движется обратно параллельно направлению первого удара.

    Важно отметить, что два симметричных друг другу тела, не могут быть вложены или наложены друг на друга. Так перчатку правой руки нельзя надеть на левую руку. Симметрично зеркальные фигуры при всём своём сходстве существенно отличаются друг от друга. Чтобы убедиться в этом, достаточно поднести лист бумаги к зеркалу и попытаться прочесть несколько слов, напечатанных на ней, буквы и слова просто-напросто будут перевёрнуты справа налево. По этой причине симметричные предметы нельзя назвать равными, поэтому их называют зеркально равными.

    Две зеркально симметричные плоские плоские фигуры всегда можно наложить друг га друга. Однако для этого необходимо вывести одну из них (или обе) из их общей плоскости. Вообще зеркально равными телами (или фигурами) называются тела (или фигуры) в том случае, если при надлежащем их смещении они могут образовать две половины зеркально симметричного тела (или фигуры).


    Поворотная симметрия - это симметрия, сохраняющаяся форму предмета при повороте вокруг некоторой оси на угол, равный 360°/n (или кратный этой величине), где n = 2, 3, 4, … Указанную ось называют поворотной осью n-го порядка.


    При п=2 все точки фигуры поворачиваются на угол 1800 (3600 /2 = 1800)вокруг оси, при этом форма фигуры сохраняется, т.е. каждая точка фигуры переходит в точку той же фигуры(фигура преобразуется сама в себя). Ось называют осью второго порядка.

    Предмет может иметь более одной поворотной оси: рис.1 – 3оси поворота, рис.2 -4 оси, рис 3 – 5 осей, рис. 4 – только 1 ось

    Всем известные буквы «И» и «Ф» обладают поворотной симметрией. Если повернуть букву «И» на 180° вокруг оси, перпендикулярной к плоскости буквы и проходящей через ее центр, то буква совместится сама с собой. Иными словами, буква «И» симметрична относительно поворота на 180°, 180°= 360°: 2, n =2 , значит она обладает симметрией второго порядка.

    Заметим, что поворотной симметрией второго порядка обладает также буква «Ф».

    Кроме того буква и имеет центр симметрии, а буква Ф ось симметрии.

    Вернемся к примерам из жизни: стакан, конусообразный фунтик с мороженым, кусочек проволоки, труба.

    Если мы повнимательней присмотримся к этим телам, то заметим, что все они, так или иначе состоят из круга, через бесконечное множество осей симметрии которого проходит бесчисленное множество плоскостей симметрии. Большинство таких тел (их называют телами вращения) имеют, конечно, и центр симметрии (центр круга), через который проходит по меньшей мере одна поворотная, ось симметрии.

    Отчетливо видна, например, ось у конуса фунтика с мороженым. Она проходит от середины круга (торчит из мороженого!) до острого конца конуса-фунтика. Совокупность элементов симметрии какого-либо тела мы воспринимаем как своего рода меру симметрии. Шар, без сомнения, в отношении симметрии является непревзойденным воплощением совершенства, идеалом. Древние греки воспринимали его как наиболее совершенное тело, а круг, естественно, как наиболее совершенную плоскую фигуру.

    Глава 2. Симметрия в природе

    2.1. Значение симметрии в познании природы

    Идея симметрии часто являлась основным пунктом в гипотезах и теориях учёных прошлого. Вносимая симметрией упорядоченность проявляется, прежде всего, в ограничении многообразия возможных структур, в сокращении числа возможных вариантов. В качестве важного физического примера можно провести факт существования определяемых симметрией ограничений разнообразия структур молекул и кристаллов. Поясним эту мысль на следующем примере. Допустим, что в некоторой отдалённой галактике обитают высокоразвитые существа, увлекающиеся среди прочих занятий также играми. Мы можем ничего не знать о вкусах этих существ, о строении их тела и особенностях психики. Однако, достоверно, что игральные кости имеют одну из пяти форм - тетраэдр, куб, октаэдр, додекаэдр, икосаэдр. Всякая иная форма форма игральной кости в принципе исключена, поскольку требование равно вероятности выпадения при игре любой грани предопределяет использование формы правильного многогранника, а таких форм только пять.

    Идея симметрии часто служила учёным путеводной нитью при рассмотрении проблем мироздания. Наблюдая хаотическую россыпь звё1зд на ночном небе, мы понимаем, что за внешним хаосом скрываются вполне симметричные спиральные структуры галактик, а в них - симметричные структуры планетных систем. Симметрия внешней формы кристалла является следствием её внутренней симметрии - упорядоченного взаимного расположения в пространстве атомов (молекул). Иначе говоря, симметрия кристалла связана с существованием пространственной решётки из атомов, так называемой кристаллической решётки.

    Согласно современной точке зрения, наиболее фундаментальные законы природы носят характер запретов. Они определяют, что может, а что не может происходить в природе. Так, законы сохранения в физике элементарных частиц являются законами запрета. Они запрещают любое явление, при котором изменялась бы «сохраняющая величина», являющаяся собственной «абсолютной» константой (собственным значением) соответствующего объекта и характеризующая его «вес» в системе других объектов. И эти значения являются абсолютными до тех пор, пока такой объект существует.

    В современной науке все законы сохранения рассматриваются именно как законы запрета. Так, в мире элементарных частиц многие законы сохранения получены как правила, запрещающие те явления, которые никогда не наблюдаются в экспериментах.

    Видный советский ученый академик В. И. Вернадский писал в 1927 году: «Новым в науке являлось не выявление принципа симметрии, а выявление его всеобщности». Действительно, всеобщность симметрии поразительна. Симметрия устанавливает внутренние связи между объектами и явлениями, которые внешне никак не связаны.

    Всеобщность симметрии не только в том, что она обнаруживается в разнообразных объектах и явлениях. Всеобщим является сам принцип симметрии, без которого по сути нельзя рассмотреть ни одной фундаментальной проблемы, будь то проблема жизни или проблема контактов с внеземными цивилизациями.

    Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твёрдого тела, атомной и ядерной физики, физики элементарных частиц. Эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. Речь при этом идёт не только о физических законах, но и о других, например, биологических.

    Примером биологического закона сохранения может служить закон наследования. В основе его лежат инвариантность биологических свойств по отношению к переходу от одного поколения к другому. Вполне очевидно, что без законов сохранения (физических, биологических и прочих) наш мир попросту не смог бы существовать.

    Следует выделить аспекты, без которых симметрия невозможна:

    1) объект - носитель симметрии; в роли симметричных объектов могут выступать вещи, процессы, геометрические фигуры, математические выражения, живые организмы и т.д.

    2) некоторые признаки - величины, свойства, отношения, явления - объекты, которые при преобразованиях симметрии остаются неизменными; их называют инвариантными.

    3) свойство объекта превращаться по выделенным признакам в самого себя после соответствующих изменений.

    Важно подчеркнуть, что инвариант вторичен по отношению к изменению; покой относителен, движение абсолютно.

    Таким образом, симметрия выражает сохранение чего-то при каких-то изменениях или сохранение чего-то несмотря на изменение. Симметрия предполагает неизменность не только самого объекта, но и каких-либо его свойств по отношению к преобразованиям, выполненным над объектом. Неизменность тех или иных объектов может наблюдаться по отношению к разнообразным операциям - к поворотам, переносам, взаимной замене частей, отражениям и т.д. В связи с эти выделяются разные типы симметрии.

    ПОВОРОТНАЯ СИММЕТРИЯ. Говорят, что объект обладает поворотной симметрией, если он совмещается сам с собой при повороте на угол 2/ n , где n может равняться 2, 3, 4 и т.д. до бесконечности. Ось симметрии называется осью n -ного порядка.

    ПЕРЕНОСНАЯ (ТРАНСЛЯЦИОННАЯ) СИММЕТРИЯ. О такой симметрии говорят тогда, когда при переносе фигуры вдоль прямой на какое-то расстояние, а либо расстояние, кратное этой величине, она совмещается сама с собой. Прямая, вдоль которой производится перенос, называется осью переноса, а расстояние а - элементарным переносом или периодом. С данным типом симметрии связано понятие периодических структур или решёток, которые могут быть и плоскими, и пространственными.

    ЗЕРКАЛЬНАЯ СИММЕТРИЯ. Зеркально симметричным считается объект, состоящий из двух половин, которые являются зеркальными двойниками по отношению друг к другу. Трёхмерный объект преобразуется сам в себя при отражении в зеркальной плоскости, которую называют плоскостью симметрии.

    Достаточно взглянуть на окружающий нас реальный мир, чтобы убедиться в первостепенном значении именно зеркальной симметрии с соответствующим симметричным элементом - плоскостью симметрии. В самом деле, форма всех объектов, которые двигаются по земной поверхности или возле неё - шагают, плывут, летят, катятся, - обладает, как правило, одной более или менее хорошо выраженной плоскостью симметрии. Всё то, что развивается или движется лишь в вертикальном направлении, характеризуется симметрией конуса, то есть имеет множество плоскостей симметрии, пересекающихся вдоль вертикальной оси. И то и другое объясняется действием силы земного тяготения, симметрия которого моделируется конусом.

    СИММЕТРИИ ПОДОБИЯ представляют собой своеобразные аналоги предыдущих симметрией с той лишь разницей, что они связаны с одновременным уменьшением или увеличением подобных частей фигуры и расстояний между ними. Простейшим примером такой симметрии являются матрёшки. Иногда фигуры могут обладать разными типами симметрии. Например, поворотной и зеркальной обладают некоторые буквы: Ж, Н, Ф, О, Х.

    Существует много других видов симметрий, имеющих абстрактный характер.

    Например, ПЕРЕСТАНОВОЧНАЯ СИММЕТРИЯ, которая состоит в том, что если тождественные частицы поменять местами, то никаких изменений не происходит; НАСЛЕДСТВЕННОСТЬ - это тоже определённая симметрия.

    КАЛИБРОВОЧНЫЕ СИММЕТРИИ связаны с изменением масштаба.

    В неживой природе симметрия, прежде всего, возникает в таком явлении природы, как кристаллы, из которых состоят практически все твёрдые тела.

    Именно она и определяет их свойства. Самый очевидный пример красоты и совершенства кристаллов - это известная всем снежинка.

    Внимательное наблюдение показывает, что основу красоты многих форм, созданных природой, составляет симметрия.

    2.2. Симметрия в живой природе. Асимметрия и симметрия

    Наиболее часто встречающиеся типы симметрии в живой природе:

    В живой природе наиболее часто встречается симметрия зеркального отражения и радиальная симметрия. Радиальная симметрия - это ось симметрии бесконечного порядка. Ещё древние греки обратили внимание на этот факт.

    Симметрией обладают объекты и явления живой природы. Она не только радует глаз и вдохновляет поэтов всех времён и народов, а позволяет живым организмам лучше приспособиться к среде обитания и просто выжить.

    В живой природе огромное большинство живых организмов обнаруживает различные виды симметрии (формы, подобия, относительного расположения). Причём организмы разного анатомического строения могут иметь один и тот же тип внешней симметрии.

    Внешняя симметрия может выступить в качестве основания классификации организмов (сферическая, осевая, радиальная и т.д.). Микроорганизмы, живущие в условиях слабого воздействия гравитации, имеют ярко выраженную симметрию формы.

    Асимметрия присутствует уже на уровне элементарных частиц и проявляется в абсолютном преобладании в нашей Вселенной частиц над античастицами. Известный физик Ф. Дайсон писал: «Открытия последних десятилетий в области физики элементарных частиц заставляет нас обратить особое внимание на концепцию нарушения симметрии. Развитие Вселенной с момента её зарождения выглядит как непрерывная последовательность нарушений симметрии. В момент своего возникновения при грандиозном взрыве Вселенная была симметрична и однородна. По мере остывания в ней нарушается одна симметрия за другой, что создаёт возможности для существования всё большего и большего разнообразия структур. Феномен жизни естественно вписывается в эту картину. Жизнь ― это тоже нарушение симметрии».

    Молекулярная асимметрия открыта Л. Пастером, который первым выделил «правые» и «левые» молекулы винной кислоты: правые молекулы похожи на правый винт, а левые ― на левый. Такие молекулы химики называют стереоизомерами.

    Молекулы стереоизомеры имеют одинаковый атомный состав, одинаковые размеры, одинаковую структуру ― в то же время они различны, поскольку являются зеркально асимметричными, т.е. Объект оказывается не тождественным со своим зеркальным двойником. Поэтому здесь понятия «правый ― левый» условны.

    В настоящее время хорошо известно, что молекулы органических веществ, составляющие основу живой материи, имеют асимметричный характер, т.е. В состав живого вещества они входят только либо как правые, либо как левые молекулы. Таким образом, каждое вещество может входить в состав живой материи только в том случае, если оно обладает вполне определённым типом симметрии. Например, молекулы всех аминокислот в любом живом организме могут быть только левыми, сахара ― только правыми. Это свойство продуктов вещества и его продуктов жизнедеятельности называют диссиметрией. Оно имеет совершенно фундаментальный характер. Хотя правые и левые молекулы неразличимы по химическим свойствам, живая материя их не только различает, но и делает выбор. Она отбраковывает и не использует молекулы, не обладающие нужной ей структурой. Как это происходит, пока не ясно. Молекулы противоположной симметрии для неё ― яд.

    Если бы живое существо оказалось в условиях, когда вся пища была бы составлена из молекул противоположной симметрии, не отвечающей диссиметрии этого организма, то оно погибло бы от голода. В неживом веществе правых и левых молекул поровну.

    Диссиметрия ― единственное свойство, благодаря которому мы можем отличать вещество биогенного происхождения от неживого вещества. Мы не можем ответить на вопрос, что такое жизнь, но имеем способ отличить живое от неживого. Таким образом, асимметрию можно рассматривать как разграничительную линию между живой и неживой природой. Для неживой материи характерно преобладание материи, при переходе от неживой к живой материи уже на микроуровне преобладает асимметрия. В живой природе асимметрию можно увидеть всюду. Очень удачно это подметил в романе «Жизнь и судьба» В. Гроссман: «В большом миллионе русских деревенских изб, нет, и не может быть неразличимо схожих. Всё живое ― неповторимо».

    Симметрия лежит в основе вещей и явлений, выражая нечто общее, свойственно разным объектам, тогда как асимметрия связана с индивидуальным воплощением общего в конкретном объекте. На принципе симметрии основан метод аналогий, предполагающий отыскание общих свойств в различных объектах На основе аналогий создаются физические модели различных объектов и явлений. Аналогии между процессами позволяют описывать их общими уравнениями.

    ОБЩАЯ ФОРМУЛА СИММЕТРИИ В БИОЛОГИИ

    Рассмотрим тела, обладающие четырьмя плоскостями симметрии, пересекающимися на оси четвёртого порядка. Симметрию таких тел можно обозначить так: 4 ۰ t .

    Общая формула симметрии таких фигур записывается в виде: N ۰ t , где N - символ оси, t - символ плоскости, t может быть равно 1, 2, 3... .

    В биологии симметрия N ۰ t называется радиальной (из-за целого веера пересекающихся на оси плоскостей)

    Билатеральная система - частный случай радиальной, так как в этом случае N =1 ۰ t .

    2.3. Симметрия растений

    Центральная симметрия образуется при повороте вокруг точки на угол 180 0. Ярко выраженной центральной симметрией обладают цветы и плоды растений.

    Изображения на плоскости многих предметов окружающего нас мира имеют ось симметрии или центр симметрии. Многие листья деревьев и лепестки цветов симметричны относительно среднего стебля. Симметрию можно увидеть и на листьях деревьев.

    Симметрию можно увидеть среди цветов. Осевой симметрией обладают цветы семейства розоцветных, а центральной симметрией - семейство крестоцветных.

    Среди цветов наблюдаются поворотные симметрии разных порядков . Многие цветы обладают характерным свойством: цветок можно повернуть так, что каждый лепесток займёт положение соседнего, цветок же совместится с самим собой. Такой цветок обладает осью симметрии. Минимальный угол, на который нужно повернуть цветок вокруг оси симметрии, чтобы он совместился с самим собой, называется элементарным углом поворота оси. Этот угол для различных цветов не одинаков. Для ириса он равен 120 градусов, для колокольчика - 72 градуса, для нарцисса - 60 градусов. Поворотную ось можно характеризовать и с помощью другой величины, называемой порядком оси и показывающей, сколько раз произойдёт смещение при повороте на 360 градусов. Те же цветы нарцисса, колокольчика и нарцисса обладают осями третьего, пятого и шестого порядков соответственно.

    Особенно часто среди цветов встречается симметрия пятого порядка. К ней относятся такие полевые цветы как колокольчик, незабудка, зверобой, лапчатка гусиная и др.; цветы плодовых растений - вишня, яблоня, груша, мандарин и др.; цветы плодово-ягодных растений - земляника, ежевика, малина, шиповник и др.; садовые цветы - настурция, флокс и др.

    В пространстве существуют тела, обладающие винтовой симметрией, т.е. Совмещающиеся со своим первоначальным положением после поворота на угол поворота вокруг оси, дополненного сдвигом той же оси.

    Винтовая симметрия наблюдается в расположении листьев на стеблях большинства растений. Располагаясь винтом по стеблю, листья как бы раскидываются во все стороны и не заслоняют друг друга от света, крайне необходимого для жизни растений. Это интересное ботаническое явление носит название филлотаксиса, что буквально означает строение листа. Другим проявлением филлотаксиса оказывается устройство соцветия подсолнечника или чешуи еловой шишки, в которой чешуйки располагаются в виде спиралей и винтовых линий. Такое расположение особенно чётко видно у ананаса, имеющего более или менее шестиугольные ячейки, которые образуют ряды, идущие в различных направлениях.

    Специфика строения растений и животных определяется особенностями среды обитания, к которой они приспосабливаются, особенностями их образа жизни. У любого древа есть основание и вершина, «верх» и «них», выполняющие различные функции. Значимость различия верхней и нижней частей, а также направление силы тяжести определяют вертикальную ориентацию поворотной оси «древесного конуса» и плоскостей симметрии.

    Для листьев характерна зеркальная симметрия. Эта же симметрия встречается и у цветов, однако у них зеркальная симметрия чаще выступает в сочетании с поворотной симметрией. Нередки случаи и переносной симметрии (веточки акации, рябины). Интересно, что в цветочном мире наиболее распространена поворотная симметрия пятого порядка, которая принципиально невозможна в периодических структурах неживой природы. Этот факт академик Н. Белов объясняет тем, что ось пятого порядка - своеобразный инструмент борьбы за существование, «страховка против окаменения, кристаллизации, первым шагом которой была бы их поимка решёткой». Действительно, живой организм не имеет кристаллического строения в том смысле, что даже отдельные его органы не обладают пространственной решёткой. Однако, упорядоченные структуры в ней представлены очень широко.

    Соты - настоящий конструкторский шедевр. Они состоят из ряда шестигранных ячеек. Это самая плотная упаковка, позволяющая наивыгоднейшим образом разместить в ячейке личинку и при максимальном возможном объёме наиболее экономно использовать строительный материал - воск

    2.4. Симметрия животных

    Внимательное наблюдение обнаруживает, что основу красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды - от простейших до самых сложных. Симметрия в строении животных - почти общее явление, хотя почти всегда встречаются исключения из общего правила.

    Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии. Строение тела многих многоклеточных организмов отражает определённые формы симметрии, такие как радиальную (лучевую) или билатеральную (двустороннюю), которые являются основными типами симметрии. Кстати, склонность к регенерации (восстановление) зависит от типа симметрии животного.

    В биологии о радиальной симметрии идёт речь, когда через трёхмерное существо проходят или более плоскости симметрии. Эти плоскости пересекаются в прямой. Если животное будет вращаться вокруг оси на определённый градус, то оно будет отражаться само на себе. В двухмерной проекции радиальная симметрия может сохраняться, если ось направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.

    При радиальной или лучистой симметрии тело имеет форму короткого или длинного цилиндра либо сосуда с центральной осью, от которого отходят в радиальном порядке части тела. Среди них встречается так называемая пентасимметрия, базирующаяся на пяти плоскостях симметрии.

    Радиальная симметрия характерна для многих стрекающих, а также для большинства иглокожих, кишечнополостных. Взрослые формы иглокожих приближаются к радиальной симметрии, в то время как их личинки билатерально симметричны.

    Лучевую симметрию мы также видим у медуз, кораллов, актиний, морских звёзд. Если вращать их вокруг собственной оси, они несколько раз «совместятся сами с собой». Если отрезать у морской звезды любое из пяти щупалец, оно сумеет восстановить всю звезду. От радиальной симметрии различаются двулучевая радиальная симметрия (две плоскости симметрии, к примеру, гребневики), а также билатеральная симметрия (одна плоскость симметрии, к примеру, двусторонне-симметричные).

    При билатеральной симметрии осей симметрии три, но симметричных сторон только одна пара. Потому что две другие стороны - брюшная и спинная - друг на друга не похожи. Этот вид симметрии характерен для большинства животных, в том числе насекомых, рыб, земноводных, рептилий, птиц, млекопитающих. Например, черви, членистоногие, позвоночные. У большинства многоклеточных (у человека в том числе) другой тип симметрии - двусторонняя. Левая половина их тела это как бы «отражённая в зеркале правая». Этот принцип, однако, не относится к отдельным внутренним органам, что демонстрирует, например, расположение печени или сердца у человека. Плоский червь планария имеет двустороннюю симметрию. Если разрезать его вдоль оси тела или поперёк, из обеих половинок вырастут новые черви. Если же измельчить планарию как-нибудь иначе - скорее всего ничего не выйдет.

    Типы симметрии у животных:

      центральная

      осевая

      радиальная

      билатеральная

      двулучевая

      поступательная (метамерия)

      поступательно-вращательная [ 10 ]

    Ось симметрии - это ось вращения. В этом случае у животных, как правило, отсутствует центр симметрии. Тогда вращение может происходить только вокруг оси. При этом ось чаще всего имеет разнокачественные полюса. Например, у кишечнополостных, гидры или актинии, на одном полюсе расположен рот, на другом - подошва, которой эти неподвижные животные прикреплены к субстрату. Ось симметрии может совпадать морфологически с переднезадей осью тела.

    Плоскость симметрии - это плоскость, проходящая через ось симметрии, совпадающая с ней и рассекающая тело на две зеркальные половины. Эти половины, расположенные друг против друга, называют антимерами (anti - против; mer - часть). Например, у гидры плоскость симметрии должна пройти через ротовое отверстие и через подошву. Антимеры противоположных половин должны иметь ровное количество щупалец, расположенных вокруг рта гидры. У гидры можно провести несколько плоскостей симметрии, число которых будет кратно числу щупалец. У актиний с очень большим числом щупалец можно провести много плоскостей симметрии. У медузы с четырьмя щупальцами на колоколе число плоскостей симметрии будет ограничено числом, кратным четырём. У гребневиков только две плоскости симметрии -глоточная и щупальцевая. Наконец, у двусторонне-симметричных организмов только одна плоскость и только две зеркальные антимеры - соответственно правая и левая стороны животного.

    Можно сказать также, что каждое животное (будь то насекомое, рыба или птица) состоит из двух анантиоморфов - правой и левой половин. Анантиоморфы - пара зеркально асимметричных объектов (фигур), являющихся зеркальным изображением один другого (например, пара перчаток). Иными словами - это объект и его зазеркальный двойник при условии, что сам объект зазеркально асимметричен.

    Сферическая симметрия имеет место у радиолярий и солнечников, тело которых сферической формы, а его части распределены вокруг центра сферы и отходят от неё. У таких организмов нет ни передней, ни задней, ни боковых частей тела, любая плоскость, проведённая через центр, делит животное на одинаковые половинки.

      1. Симметрия в неживой природе

    Однако симметрия существует и там, где её не видно на первый взгляд. Физик сказал, что всякое твёрдое тело - кристалл. Знаменитый кристаллограф Евграф Степанович Фёдоров сказал: «Кристаллы блещут симметрией». Химик скажет, что все тела состоят из атомов. А многие атомы располагаются в пространстве по принципу симметрии.

    В мир неживой природы очарование симметрии вносят кристаллы. Каждая снежинка - это маленький кристалл замёрзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией.


    2.5. ЧЕЛОВЕК - СУЩЕСТВО СИММЕТРИЧНОЕ

    Не станем пока разбираться, существует ли на самом деле абсолютно симметричный человек. У каждого, разумеется, обнаружится родинка, прядь волос или какая-нибудь другая деталь, нарушающая внешнюю симметрию. Левый глаз никогда не бывает в точности таким, как правый, да и уголки рта находятся на разной высоте, во всяком случае, у большинства людей. И всё же это лишь мелкие несоответствия. Никто не усомнится, что внешне человек построен симметрично: левой руке всегда соответствует правая и обе руки совершенно одинаковы! Если бы наши руки и в самом деле были совершенно одинаковы, мы могли бы в любой момент поменять их. Было бы возможно, скажем, путём трансплантации пересадить левую ладонь на правую руку, или, проще, левая перчатка подходила бы тогда к правой руке, но на самом деле это не так. Каждому известно, что сходство между нашими руками, ушами, глазами и другими частями тела такое же, как между предметом и его отражением в зеркале. Многие художники обращали пристальное внимание на симметрию и пропорции человеческого тела, во всяком случае, до тех пор, пока ими руководило желание в своих произведениях как можно точнее следовать природе.

    Известны каноны пропорций, составленные Альбрехтом Дюрером и Леонардо да Винчи. Согласно этим канонам, человеческое тело не только симметрично, но и пропорционально. Леонардо открыл, что тело вписывается в круг и в квадрат. Дюрер занимался поисками единой меры, которая находилась бы в едином соотношении с длиной туловища или ноги (такой мерой он считал длину руки до локтя). В современных школах живописи в качестве единой меры чаще всего принимается размер головы по вертикали. С известным допущением можно считать, что длина туловища превосходит размер головы в восемь раз. На первый взгляд это кажется странным. Но нельзя забывать, что большинство высоких людей отличаются удлинённым черепом и, наоборот. Размеру головы пропорциональна не только длина туловища, но и размеры других частей тела. По этому принципу построены все люди, оттого-то мы, в общем, похожи друг на друга. Однако, наши пропорции согласуются лишь приблизительно, а потому люди лишь похожи, но неодинаковы. Во всяком случае, все мы симметричны! К тому же некоторые художники в своих произведениях особенно подчёркивают эту симметрию. И в одежде человек тоже, как правило, старается поддерживать впечатление симметричности: правый рукав соответствует левому, левая штанина - правой. Пуговицы на куртке или рубашке сидят ровно посередине, а если и отступают от неё, то на симметричные расстояния. Но на фоне этой общей симметрии в мелких деталях мы умышленно допускаем асимметрию, например, расчёсывая волосы на косой пробор - слева или справа или делая асимметричную стрижку. Или, скажем, помещая на костюме асимметричный кармашек на груди. Или, надев кольцо на безымянный палец только одной руки. Лишь на одной стороне груди носятся ордена и значки. Полная безукоризненная симметрия выглядела бы нестерпимо скучно. Именно небольшие отклонения от неё и придают индивидуальные, характерные черты. И вместе с тем порой человек старается подчеркнуть, усилить различие между левым и правым. В средние века мужчины одно время щеголяли в панталонах со штанинами разных цветов (например, в одной - красной, а в другой - чёрной или белой). В не столь отдалённые дни были популярны джинсы с яркими заплатами или цветными разводами. Но подобная мода всегда недолговечна. Лишь тактичные, скромные отклонения от симметрии остаются на долгие времена.

    ЗАКЛЮЧЕНИЕ

    С симметрией мы встречаемся везде - в природе, технике, искусстве, науке. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Принципы симметрии играют важную роль в физике, математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. Законы природы, управляющие неисчерпаемой в своём многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии. Существует множество видов симметрии, как в растительном, так и в животном мире, но при всём многообразии живых организмов, принцип симметрии действует всегда, и этот факт еще раз подчёркивает гармоничность нашего мира. Ещё одним интересным проявлением симметрии являются биологические ритмы (биоритмы), циклические колебания биологических процессов и их характеристик (сокращения сердца, дыхание, колебания интенсивности деления клеток, обмена веществ, двигательной активности, численности растений и животных), зачастую связанные с приспособлением организмов к геофизическим циклам. Исследованием биоритмов занимается особая наука - хронобиология. Помимо симметрии существует также понятие асимметрии. Симметрия лежит в основе вещей и явлений, выражая нечто общее, свойственное разным объектам, тогда как асимметрия связана с индивидуальным воплощением этого общего в конкретном объекте. Симметрия окружает человека на каждом шагу. В природе и во многих творениях человека без симметрии не было бы красоты, совершенства и удобства. Как бы мы жили без симметрии? Неужели лишь она украшает наш мир? Да, без симметрии наш мир выглядел бы совсем по-другому. Ведь именно на симметрии основаны многие законы сохранения. Например, законы сохранения энергии, импульса и момента импульса являются следствиями пространственно-временных симметрий. И без симметрии не было бы законов сохранения, которые во многом управляют нашим миром.

    ТАК ЧТО СИММЕТРИЯ - ОДНО ИЗ ГЛАВНЫХ ПОНЯТИЙ ВО ВСЕЛЕННОЙ!

    Список литературы

    1. Атанасян, Л. С. Бутузов В. Ф. «Геометрия 10 - 11 класс»

    2. Вейль, Г.«Симметрия» Москва, 2002

    3. Виленкин, З. Н. «Симметрия в природе и технике» М.: Едиториал УРСС, 2003 г.

    4. Выгодский, М. Я «Справочник по элементарной математике»

    Издательство «Наука». - Москва, 1971 г.

    5. Гика М. «Эстетика пропорций в природе и искусстве» Москва, 1936 г.

    6. Гильде, В.«Зеркальный мир» Мир, 1982 г.

    7. Даль, В. И. «Толковый словарь живого великорусского языка» Москва, 1978 г..

    8. Ожегов, С. И. Толковый словарь русского языка / Ожегов, С. И.,. Шведова, Н. Ю – М.: Просвещение, 2010.Емельянов В. «Фундаментальные симметрии»МИФИ, 2008 г.

    9. Тарасов, С Л. «Этот удивительно симметричный мир» Издательство: - М.: Просвещение, 2002 г.

    10. Тарасов, С. Л«Симметрия в окружающем мире» ОНИКС, 2005 г

    11. Урманцев, Ю. А. Симметрия природы и природа симметрии /. Урманцев. Ю.А- М.: Мысль, 1974 г.

    12. Шубников А. В., «Симметрия в науке и искусстве» Москва, 1972 г..

    13.

    14.