Лотки перфорированные

Уравнения касательной и нормали к поверхности. Уравнение касательной плоскости и нормали к поверхности

Уравнения касательной и нормали к поверхности. Уравнение касательной плоскости и нормали к поверхности

А именно, о том, что вы видите в заголовке. По существу, это «пространственный аналог» задачи нахождения касательной и нормали к графику функции одной переменной, и поэтому никаких трудностей возникнуть не должно.

Начнём с базовых вопросов: ЧТО ТАКОЕ касательная плоскость и ЧТО ТАКОЕ нормаль? Многие осознают эти понятия на уровне интуиции. Самая простая модель, приходящая на ум – это шар, на котором лежит тонкая плоская картонка. Картонка расположена максимально близко к сфере и касается её в единственной точке. Кроме того, в точке касания она закреплена торчащей строго вверх иголкой.

В теории существует довольно остроумное определение касательной плоскости. Представьте произвольную поверхность и принадлежащую ей точку . Очевидно, что через точку проходит много пространственных линий , которые принадлежат данной поверхности. У кого какие ассоциации? =) …лично я представил осьминога. Предположим, что у каждой такой линии существует пространственная касательная в точке .

Определение 1 : касательная плоскость к поверхности в точке – это плоскость , содержащая касательные ко всем кривым, которые принадлежат данной поверхности и проходят через точку .

Определение 2 : нормаль к поверхности в точке – это прямая , проходящая через данную точку перпендикулярно касательной плоскости.

Просто и изящно. Кстати, чтобы вы не померли со скуки от простоты материала, чуть позже я поделюсь с вами одним изящным секретом, который позволяет РАЗ И НАВСЕГДА забыть о зубрёжке различных определений.

С рабочими формулами и алгоритмом решения познакомимся прямо на конкретном примере. В подавляющем большинстве задач требуется составить и уравнение касательной плоскости, и уравнения нормали:

Пример 1

Решение :если поверхность задана уравнением (т.е. неявно) , то уравнение касательной плоскости к данной поверхности в точке можно найти по следующей формуле:

Особое внимание обращаю на необычные частные производные – их не следует путать с частными производными неявно заданной функции (хотя поверхность задана неявно) . При нахождении этих производных нужно руководствоваться правилами дифференцирования функции трёх переменных , то есть, при дифференцировании по какой-либо переменной, две другие буквы считаются константами:

Не отходя от кассы, найдём частную производную в точке:

Аналогично:

Это был самый неприятный момент решения, в котором ошибка если не допускается, то постоянно мерещится. Тем не менее, здесь существует эффективный приём проверки, о котором я рассказывал на уроке Производная по направлению и градиент .

Все «ингредиенты» найдены и теперь дело за аккуратной подстановкой с дальнейшими упрощениями:

общее уравнение искомой касательной плоскости.

Настоятельно рекомендую проконтролировать и этот этап решения. Сначала нужно убедиться, что координаты точки касания действительно удовлетворяют найденному уравнению:

– верное равенство.

Теперь «снимаем» коэффициенты общего уравнения плоскости и проверяем их на предмет совпадения либо пропорциональности с соответствующими значениями . В данном случае пропорциональны. Как вы помните из курса аналитической геометрии , – это вектор нормали касательной плоскости, и он же – направляющий вектор нормальной прямой. Составим канонические уравнения нормали по точке и направляющему вектору :

В принципе, знаменатели можно сократить на «двойку», но особой надобности в этом нет

Ответ :

Уравнения не возбраняется обозначить какими-нибудь буквами, однако, опять же – зачем? Здесь и так предельно понятно, что к чему.

Следующие два примера для самостоятельного решения. Небольшая «математическая скороговорка»:

Пример 2

Найти уравнения касательной плоскости и нормали к поверхности в точке .

И задание, интересное с технической точки зрения:

Пример 3

Составить уравнения касательной плоскости и нормали к поверхности в точке

В точке .

Тут есть все шансы не только запутаться, но и столкнуться с трудностями при записи канонических уравнений прямой . А уравнения нормали, как вы, наверное, поняли, принято записывать именно в таком виде. Хотя, по причине забывчивости либо незнания некоторых нюансов более чем приемлема и параметрическая форма.

Примерные образцы чистового оформления решений в конце урока.

В любой ли точке поверхности существует касательная плоскость? В общем случае, конечно же, нет. Классический пример – это коническая поверхность и точка – касательные в этой точке непосредственно образуют коническую поверхность, и, разумеется, не лежат в одной плоскости. В неладах легко убедиться и аналитически: .

Другим источником проблем является факт несуществования какой-либо частной производной в точке. Однако это ещё не значит, что в данной точке нет единой касательной плоскости.

Но то была, скорее, научно-популярная, нежели практически значимая информация, и мы возвращаемся к делам насущным:

Как составить уравнения касательной плоскости и нормали в точке,
если поверхность задана явной функцией ?

Перепишем её в неявном виде :

И по тем же принципам найдём частные производные:

Таким образом, формула касательной плоскости трансформируется в следующее уравнение:

И соответственно, канонические уравнения нормали:

Как нетрудно догадаться, – это уже «настоящие» частные производные функции двух переменных в точке , которые мы привыкли обозначать буквой «зет» и находили 100500 раз.

Заметьте, что в данной статье достаточно запомнить самую первую формулу, из которой в случае необходимости легко вывести всё остальное (понятно, обладая базовым уровнем подготовки) . Именно такой подход следует использовать в ходе изучения точных наук, т.е. из минимума информации надо стремиться «вытаскивать» максимум выводов и следствий. «Соображаловка» и уже имеющиеся знания в помощь! Этот принцип полезен ещё и тем, что с большой вероятностью спасёт в критической ситуации, когда вы знаете очень мало.

Отработаем «модифицированные» формулы парой примеров:

Пример 4

Составить уравнения касательной плоскости и нормали к поверхности в точке .

Небольшая тут накладка получилась с обозначениями – теперь буква обозначает точку плоскости , но что поделать – такая уж популярная буква….

Решение : уравнение искомой касательной плоскости составим по формуле:

Вычислим значение функции в точке :

Вычислим частные производные 1-го порядка в данной точке:

Таким образом:

аккуратно, не спешим:

Запишем канонические уравнения нормали в точке :

Ответ :

И заключительный пример для самостоятельного решения:

Пример 5

Составить уравнения касательной плоскости и нормали к поверхности в точке .

Заключительный – потому, что фактически все технические моменты я разъяснил и добавить особо нечего. Даже сами функции, предлагаемые в данном задании, унылы и однообразны – почти гарантированно на практике вам попадётся «многочлен», и в этом смысле Пример №2 с экспонентой смотрится «белой вороной». Кстати, гораздо вероятнее встретить поверхность, заданную уравнением и это ещё одна причина, по которой функция вошла в статью «вторым номером».

И напоследок обещанный секрет: так как же избежать зубрёжки определений? (я, конечно, не имею в виду ситуацию, когда студент что-то лихорадочно зубрит перед экзаменом)

Определение любого понятия/явления/объекта, прежде всего, даёт ответ на следующий вопрос: ЧТО ЭТО ТАКОЕ? (кто/такая/ такой/такие) . Осознанно отвечая на данный вопрос, вы должны постараться отразить существенные признаки, однозначно идентифицирующие то или иное понятие/явление/объект. Да, поначалу это получается несколько косноязычно, неточно и избыточно (препод поправит =)), но со временем развивается вполне достойная научная речь.

Потренируйтесь на самых отвлечённых объектах, например, ответьте на вопрос: кто такой Чебурашка? Не так-то всё просто;-) Это «сказочный персонаж с большими ушами, глазами и коричневой шерстью»? Далеко и очень далеко от определения – мало ли существует персонажей с такими характеристиками…. А вот это уже гораздо ближе к определению: «Чебурашка – это персонаж, придуманный писателем Эдуардом Успенским в 1966 г, который …(перечисление основных отличительных признаков)» . Обратите внимание, как грамотно начата

Скачать с Depositfiles

4. ТЕОРИЯ ПОВЕРХНОСТЕЙ.

4.1 УРАВНЕНИЯ ПОВЕРХНОСТЕЙ.

Поверхность в трёхмерном пространстве может быть задана:

1) неявно: F ( x , y , z ) =0 (4.1)

2) явно: z = f ( x , y ) (4.2)

3) параметрически: (4.3)

или:
(4.3’)

где скалярные аргументы
иногда называют криволинейными координатами. Например, сферу
удобно задавать в сферических координатах:
.

4.2 КАСАТЕЛЬНАЯ ПЛОСКОСТЬ И НОРМАЛЬ К ПОВЕРХНОСТИ.

Если линия лежит на поверхности (4.1), то координаты её точек удовлетворяют уравнению поверхности:

Дифференцируя это тождество, получим:

(4.4)

или
(4.4 ’ )

в каждой точке кривой на поверхности. Таким образом, вектор градиента в неособых точках поверхности (в которых функция (4.5) дифференцируема и
) перпендикулярен касательным векторам к любым линиям на поверхности, т.е может быть использован в качестве вектора нормали для составления уравнения касательной плоскости в точке М 0 (x 0 , y 0 , z 0 ) поверхности

(4.6)

и в качестве направляющего вектора в уравнении нормали:


(4.7)

В случае явного (4.2) задания поверхности уравнения касательной плоскости и нормали соответственно примут вид:

(4.8)

и
(4.9)

При параметрическом представлении поверхности (4.3) векторы
лежат в касательной плоскости и уравнение касательной плоскости может быть записано в виде:


(4.10)

а в качестве направляющего вектора нормали может быть принято их векторное произведение:

и уравнение нормали может быть записано в виде:

(4.11)

где
— значения параметров соответствующие точке М 0 .

В дальнейшем мы ограничимся рассмотрением лишь таких точек поверхности, где векторы


не равны нулю и не параллельны.

Пример 4.1 Составить уравнения касательной плоскости и нормали в точке М 0 (1,1,2) к поверхности параболоида вращения
.

Решение: Так как уравнение параболоида задано в явном виде, то согласно (4.8) и (4.9) нужно найти
в точке М 0 :

, а в точке М 0
. Тогда уравнение касательной плоскости в точке М
0 примет вид:

2(x -1)+2(y -1)-(z -2)=0 или 2 x +2 y – z ‑ 2=0, а уравнение нормали
.

Пример 4.2 Составить уравнения касательной плоскости и нормали в произвольной точке геликоида
, .

Решение. Здесь ,

Уравнение касательной плоскости:

или

Уравнения нормали:

.

4.3 ПЕРВАЯ КВАДРАТИЧНАЯ ФОРМА ПОВЕРХНОСТИ.

Если поверхность задается уравнением

то кривая
на ней может быть задана уравнением
(4.12)

Дифференциал радиус-вектора
вдоль кривой, отвечающий смещению из точки М 0 в близлежащую точку М, равен


(4.13)

Так как
— дифференциал дуги кривой, отвечающий тому же смещению), то

(4.14)

где .

Выражение в правой части (4.14) называется первой квадратичной формой поверхности и играет в теории поверхностей огромную роль.

Интегрирую дифференциал ds в пределах от t 0 (соответствует точке М 0 ) до t (соответствует точке М), получим длину соответствующего отрезка кривой


(4.15)

Зная первую квадратичную форму поверхности, можно находить не только длины, но и углы между кривыми.

Если du , dv — дифференциалы криволинейных координат, отвечающие бесконечно малому смещению по одной кривой, а
— по другой, то с учетом (4.13):

(4.16)

С помощью формулы


(4.17)

первая квадратичная форма дает возможность вычислить площадь области
поверхности.

Пример 4.3 На геликоиде , найти длину винтовой линии
между двумя точками .

Решение. Поскольку на винтовой линии
, то . Найдём в точке
первую квадратичную форму. Обозначив и v = t , получим уравнение данной винтовой линии в виде . Квадратичная форма:

= ‑ первая квадратичная форма.

Здесь . В формуле (4.15) в данном случае
и длина дуги:

=

4.4 ВТОРАЯ КВАДРАТИЧНАЯ ФОРМА ПОВЕРХНОСТИ.

Обозначим
‑ единичный вектор нормали к поверхности
:

(4.18) . (4.23)

Линия на поверхности называется линией кривизны, если ее направление в каждой точке является главным направлением.

4.6 ПОНЯТИЕ О ГЕОДЕЗИЧЕСКИХ ЛИНИЯХ НА ПОВЕРХНОСТИ.

Определение 4.1 . Кривая на поверхности называется геодезической, если ее главная нормаль в каждой точке, где кривизна отлична от нуля, совпадает с нормалью к поверхности.

Через каждую точку поверхности в любом направлении проходит, и при том только одна геодезическая. На сфере, например, геодезическими являются большие круги.

Параметризация поверхности называется полугеодезической, если одно семейство координатных линий состоит из геодезических, а второе ему ортогонально. Например, на сфере меридианы (геодезические) и параллели.

Геодезическая на достаточно малом отрезке является кратчайшей среди всех близких к ней кривых, соединяющих те же точки.

Пусть имеем поверхность, заданную уравнением вида

Введем следующее определение.

Определение 1. Прямая линия называется касательной к поверхности в некоторой точке , если она является

касательной к какой-либо кривой, лежащей на поверхности и проходящей через точку .

Так как через точку Р проходит бесконечное число различных кривых, лежащих на поверхности, то и касательных к поверхности, проходящих через эту точку, будет, вообще говоря, бесконечное множество.

Введем понятие об особых и обыкновенных точках поверхности

Если в точке все три производные равны нулю или хотя бы одна из этих производных не существует, то точка М называется особой точкой поверхности. Если в точке все три производные существуют и непрерывны, причем хотя бы одна из них отлична от нуля, то точка М называется обыкновенной точкой поверхности.

Теперь мы можем сформулировать следующую теорему.

Теорема. Все касательные прямые к данной поверхности (1) в ее обыкновенной точке Р лежат в одной плоскости.

Доказательство. Рассмотрим на поверхности некоторую линию L (рис. 206), проходящую через данную точку Р поверхности. Пусть рассматриваемая кривая задана параметрическими уравнениями

Касательная к кривой будет касательной к поверхности. Уравнения этой касательной имеют вид

Если выражения (2) подставить в уравнение (1), то это уравнение превратится в тождество относительно t, так как кривая (2) лежит на поверхности (1). Дифференцируя его по получим

Проекции этого вектора зависят от - координат точки Р; заметим, что так как точка Р обыкновенная, то эти проекции в точке Р одновременно не обращаются в нуль и потому

касательный к кривой, проходящей через точку Р и лежащей на поверхности. Проекции этого вектора вычисляются на основании уравнений (2) при значении параметра t, соответствующем точке Р.

Вычислим скалярное произведение векторов N и которое равно сумме произведений одноименных проекций:

На основании равенства (3) выражение, стоящее в правой части, равно нулю, следовательно,

Из последнего равенства следует, что вектор ЛГ и касательный вектор к кривой (2) в точке Р перпендикулярны. Проведенное рассуждение справедливо для любой кривой (2), проходящей через точку Р и лежащей на поверхности. Следовательно, каждая касательная к поверхности в точке Р перпендикулярна к одному и тому же вектору N и потому все эти касательные лежат в одной плоскости, перпендикулярной к вектору ЛГ. Теорема доказана.

Определение 2. Плоскость, в которой расположены все касательные прямые к линиям на поверхности, проходящим через данную ее точку Р, называется касательной плоскостью к поверхности в точке Р (рис. 207).

Заметим, что в особых точках поверхности может не существовать касательной плоскости. В таких точках касательные прямые к поверхности могут не лежать в одной плоскости. Так, например, вершина конической поверхности является особой точкой.

Касательные к конической поверхности в этой точке не лежат в одной плоскости (они сами образуют коническую поверхность).

Напишем уравнение касательной плоскости к поверхности (1) в обыкновенной точке. Так как эта плоскость перпендикулярна вектору (4), то, следовательно, ее уравнение имеет вид

Если уравнение поверхности задано в форме или уравнение касательной плоскости в этом случае примет вид

Замечание. Если в формуле (6) положим , то эта формула примет вид

ее правая часть представляет собой полный дифференциал функции . Следовательно, . Таким образом, полный дифференциал функции двух переменных в точке соответствующий приращениям независимых переменных х и у, равен соответствующему приращению аппликаты касательной плоскости к поверхности, которая является графиком данной функции.

О пределение 3. Прямая, проведенная через точку поверхности (1) перпендикулярно к касательной плоскости, называется нормалью к поверхности (рис. 207).

Напишем уравнения нормали. Так как ее направление совпадает с направлением вектора N, то ее уравнения будут иметь вид

Рассмотрим геометрические приложения производной функции нескольких переменных. Пусть функция двух переменных задана неявно: . Эта функция в области своего определения изображается некоторой поверхностью (п. 5.1). Возьмем на данной поверхности произвольную точку , в которой все три частных производных , , существуют и непрерывны, причем хотя бы одна из них не равна нулю.

Точка с такими характеристиками называется обыкновенной точкой поверхности. Если хотя бы одно из указанных выше требований не выполняется, то точка называется особой точкой поверхности.

Через выбранную на поверхности точку можно провести множество кривых, к каждой из которых может быть проведена касательная.

Определение 5.8.1 . Плоскость, в которой расположены все касательные прямые к линиям на поверхности, проходящим через некоторую точку , называется касательной плоскостью к данной поверхности в точке .

Чтобы провести данную плоскость достаточно иметь две касательных прямых, то есть две кривых на поверхности. Это могут быть кривые, полученные в результате сечения данной поверхности плоскостями , (рис. 5.8.1).

Запишем уравнение касательной линии к кривой, лежащей на пересечении поверхности и плоскости . Поскольку данная кривая лежит в системе координат , то уравнение касательной к ней в точке , в соответствии с п. 2.7, имеет вид:

. (5.8.1)

Соответственно, уравнение касательной к кривой, лежащей на пересечении поверхности и плоскости , в системе координат в той же точке имеет вид:

. (5.8.2)

Воспользуемся выражением для производной неявно заданной функции (п. 5.7). Тогда , а . Подставляя эти производные в (5.8.1) и (5.8.2), получим, соответственно:

; (5.8.3)

. (5.8.4)

Поскольку полученные выражения не что иное, как уравнения прямых в канонической форме (п. 15), то из (5.8.3) получаем направляющий вектор , а из (5.8.4) – . Векторное произведение даст вектор, нормальный к данным касательным линиям, а, следовательно, и к касательной плоскости:

Отсюда следует, что уравнение касательной плоскости к поверхности в точке имеет вид (п. 14):



Определение 5.8.2 . Прямая, проведенная через точку поверхности перпендикулярно касательной плоскости в этой точке, называется нормалью к поверхности .

Так как направляющий вектор нормали к поверхности совпадает с нормалью к касательной плоскости , то уравнение нормали имеет вид:

.

Скалярное поле

Пусть в пространстве задана область , занимающая часть или все это пространство. Пусть каждой точке этой области по какому-то закону поставлена в соответствие некоторая скалярная величина (число).

Определение 5.9.1 . Область в пространстве, каждой точке которой ставится в соответствие по известному закону некоторая скалярная величина , называется скалярным полем .

Если с областью связана какая-то система координат, например, прямоугольная декартовая, то каждая точка приобретает свои координаты. В этом случае скалярная величина становится функцией координат: на плоскости – , в трехмерном пространстве – . Скалярным полем часто называют и саму функцию , описывающую данное поле. В зависимости от размерности пространства, скалярное поле может быть плоским, трехмерным и т.д.

Необходимо подчеркнуть, что величина скалярного поля зависит лишь от положения точки в области , но не зависит от выбора системы координат.

Определение 5.9.2 . Скалярное поле, зависящее только от положения точки в области , но не зависящее от времени, называется стационарным .

Нестационарные скалярные поля, то есть зависящие от времени, в данном разделе нами рассматриваться не будут.

В качестве примеров скалярных полей можно назвать поле температур, поле давлений в атмосфере, поле высот над уровнем океана.

Геометрически скалярные поля часто изображаются с помощью так называемых линий или поверхностей уровня.

Определение 5.9.3 . Множество всех точек пространства, в которых скалярное поле имеет одно и то же значение называется поверхностью уровня или эквипотенциальной поверхностью. В плоском случае для скалярного поля это множество называется линией уровня или эквипотенциальной линией .

Очевидно, что уравнение поверхности уровня имеет вид , линии уровня – . Придавая в данных уравнениях константе разные значения, получаем семейство поверхностей или линий уровня. Например, (вложенные друг в друга сферы с разными радиусами) или (семейство эллипсов).

В качестве примеров линий уровня из физики можно привести изотермы (линии равных температур), изобары (линии равных давлений); из геодезии – линии равных высот и т.д.

1°. Уравнения касательной плоскости и нормали для случая явного задания поверхности.

Рассмотрим одно из геометрических приложений частных производных функции двух переменных. Пусть функция z = f (x ; y ) дифференцируема в точке (x 0 ; у 0) некоторой области D Î R 2 . Рассечем поверхность S , изображающую функцию z, плоскостями х = х 0 и у = у 0 (рис. 11).

Плоскость х = x 0 пересекает поверхность S по некоторой линии z 0 (y ), уравнение которой получается подстановкой в выражение исходной функции z = =f (x ; y ) вместо х числа x 0 . Точка M 0 (x 0 ; y 0, f (x 0 ; y 0)) принадлежит кривой z 0 (y ). В силу дифференцируемой функции z в точке М 0 функция z 0 (y ) также является дифференцируемой в точке у =у 0 . Следовательно, в этой точке в плоскости х = х 0 к кривой z 0 (y ) может быть проведена касательная l 1 .

Проводя аналогичные рассуждения для сечения у = у 0 , построим касательную l 2 к кривой z 0 (x ) в точке х = x 0 - Прямые 1 1 и 1 2 определяют плоскость , которая называется касательной плоскостью к поверхности S в точке М 0 .

Составим ее уравнение. Так как плоскость проходит через точку Mo (x 0 ; y 0 ; z 0), то ее уравнение может быть записано в виде

А(х - хо) + В(у - уо) + C (z - zo ) = 0,

которое можно переписать так:

z -z 0 = A 1 (x – х 0) + B 1 (y – у 0) (1)

(разделив уравнение на -С и обозначив ).

Найдем A 1 и B 1 .

Уравнения касательных 1 1 и 1 2 имеют вид

соответственно.

Касательная l 1 лежит в плоскости a , следовательно, координаты всех точек l 1 удовлетворяют уравнению (1). Этот факт можно записать в виде системы

Разрешая эту систему относительно B 1 , получим, что .Проводя аналогичные рассуждения для касательной l 3 , легко установить, что .

Подставив значения А 1 и B 1 в уравнение (1), получаем искомое уравнение касательной плоскости:

Прямая, проходящая через точку М 0 и перпендикулярная касательной плоскости, построенной в этой точке поверхности, называется еенормалью.

Используя условие перпендикулярности прямой и плоскости, легко получить канонические уравнения нормали:

Замечание. Формулы касательной плоскости и нормали к поверхности получены для обыкновенных, т. е. не особых, точек поверхности. Точка М 0 поверхности называется особой, если в этой точке все частные производные равны нулю или хотя бы одна из них не существует. Такие точки мы не рассматриваем.

Пример. Написать уравнения касательной плоскости и нормали к поверхности в ее точке М(2; -1; 1).

Решение. Найдем частные производные данной функции и их значения в точке М

Отсюда, применяя формулы (2) и (3), будем иметь: z-1=2(х-2)+2(у+1) или 2х+2у-z-1=0 - уравнение касательной плоскости и - уравнения нормали.

2°. Уравнения касательной плоскости и нормали для случая неявного задания поверхности.

Если поверхность S задана уравнением F (x ; у; z ) = 0, то уравнения (2) и (3), с учетом того, что частные производные могут быть найдены как производные неявной функции.