Септики

Алгоритм решения линейных систем дифференциальных уравнений третьего порядка. Практическая работа «Решение систем линейных уравнений третьего порядка методом Крамера Метод крамера примеры с решением 3 порядка

Алгоритм решения линейных систем дифференциальных уравнений третьего порядка. Практическая работа «Решение систем линейных уравнений третьего порядка методом Крамера Метод крамера примеры с решением 3 порядка
Для более глубокого понимания происходящего в этой статье можно ознакомиться с .

Рассмотрим однородную систему дифференциальных уравнений третьего порядка

Здесь x(t), y(t), z(t) - искомые функции на промежутке (a, b), a ij (i, j =1, 2, 3) - вещественные числа.

Запишем исходную систему в матричном виде
,
где

Решение исходной системы будем искать в виде
,
где , C 1 , C 2 , C 3 - произвольные постоянные.

Чтобы найти фундаментальную систему решений, нужно решить так называемое характеристическое уравнение

Это уравнение является алгебраическим уравнением третьего порядка, следовательно оно имеет 3 корня. При этом возможны следующие случаи:

1. Корни (собственные значения) действительны и различны.

2. Среди корней (собственных значений) есть комплексно-сопряженные, пусть
- действительный корень
=

3. Корни (собственные значения) действительны. Один из корней кратный.

Чтобы разобраться, как действовать в каждом из этих случаев, нам понадобятся:
Теорема 1.
Пусть - попарно различные собственные значения матрица А, а - соответствующие им собственные векторы. Тогда

образуют фундаментальную систему решений исходной системы.

Замечание .
Пусть - действительное собственное значение матрица А (действительный корень характеристического уравнения), - соответствующий ему собственный вектор.
= - комплексные собственные значения матрицы А, - соответствующий - собственный вектор. Тогда

(Re - действительная часть, Im - мнимая)
образуют фундаментальную систему решений исходной системы. (Т.е. и = рассматриваются вместе)

Теорема 3.
Пусть - корень характеристического уравнения кратности 2. Тогда исходная система имеет 2 линейно независимых решения вида
,
где , - постоянные вектора. Если же кратности 3, то существует 3 линейно независимых решения вида
.
Векторы находятся подствалением решений (*) и (**) в исходную систему.
Чтобы лучше понять метод нахождения решений вида (*) и (**), смотри разобранные типичные примеры ниже.

Теперь рассмотрим более подробно каждый из вышеописанных случаев.

1. Алгоритм решения однородных систем дифференциальных уравнений третьего порядка в случае различных действительных корней характеристического уравнения.
Дана система

1) Составляем характеристическое уравнение

- действительные и различные собственные значения 9корни этого уравнения).
2)Строим , где

3)Строим , где
- собственный вектор матрицы А, соответствующий , т.е. - любое решение системы

4)Строим , где
- собственный вектор матрицы А, соответствующий , т.е. - любое решение системы

5)

составляют фундаментальную систему решений. Далее записываем общее решение исходной системы в виде
,
здесь C 1 , C 2 , C 3 - произвольные постоянные,
,
или в координатном виде

Расмотрим несколько примеров:
Пример 1.




2) Находим


3)Находим


4)Вектор-функции



или в координатной записи

Пример 2.

1)Составляем и решаем характеристическое уравнение:

2) Находим


3)Находим


4)Находим


5)Вектор-функции

образуют фундаментальную систему. Общее решение имеет вид

или в координатной записи

2. Алгоритм решения однородных систем дифференциальных уравнений третьего порядка в случае комплексно-сопряженных корней характеристического уравнения.


- действительный корень,

2)Строим , где

3) Строим

- собственный вектор матрицы А, соответствующий , т.е. удовлетворяет системе

Здесь Re - действительная часть
Im - мнимая часть
4) составляют фундаментальную систему решений. Далее записываем общее решение исходной системы:
, где
С 1 , С 2 ,С 3 произвольные постоянные.

Пример 1.

1) Составляем и решаем характеристическое уравнение

2)Строим



3) Строим
, где


Первое уравнение сократим на 2. Затем ко второму уравнению прибавим первое, умноженное на 2i, а от третьего уравнения отнимем перове, умноженное на 2.

Далее

Следовательно,

4) - фундаментальная система решений. Запишем общее решение исходной системы:

Пример 2.

1) Составляем и решаем харктеристическое уравнение


2)Строим

(т.е. и рассматриваем вместе), где


Второе уравнение умножим на (1-i) и сократим на 2.


Следовательно,

3)
Общее решение исходной системы

или

2. Алгоритм решения однородных систем дифференциальных уравнений третьего порядка в случае кратных корней характеристического уравнения.
Составляем и решаем характеристическое уравнение

Возможны два случая:

Рассмотрим случай а) 1) , где

- собственный вектор матрицы А, соответствующий , т.е удовлетворяет системе

2) Сошлемся на Теорему 3, из которой следует, что существуют два линейно независимых решения вида
,
где , - постоянные векторы. Их возьмем за .
3) - фундаментальная система решений. Далее записываем общее решение исходной системы:

Рассмотрим случай б):
1) Сошлемся на Теорему 3, из которой следует, что существует три линейно независимых решения вида
,
где , , - постоянные векторы. Их возьмем за .
2) - фундаментальная система решений. Далее записываем общее решение исходной системы.

Чтобы лучше понять как находить решения вида (*), рассмотрим несколько типичных примеров.

Пример 1.

Составляем и решаем характеристическое уравнение:

Имеем случай а)
1) Строим
, где

Из второго уравнения вычитаем первое:

? третья строка подобна второй, ее вычеркиваем. Из первого уравнения вычтем второе:

2) = 1 (кратность 2)
Этому корню по Т.3 должно соответствовать два линейно независимых решения вида .
Попробуем найти все линейно незваисимые решения, у которых , т.е. решения вида
.
Такой вектор будет решением тогда и только тогда, когда - собственный вектор, соответствующий =1, т.е.
, или
, вторая и третья строки подобны первой, выкидываем их.

Система свелась к одному уравнению. Следовательно, имеется два свободных неизвестных, например, и . Дадим им сначала значения 1, 0; потом значения 0, 1. Получим такие решения:
.
Следовательно, .
3) - фундаментальная система решений. Осталось записать общее решение исходной системы:
. .. Таким образом существует только одно решение вида Подставим X 3 в эту систему: Вычеркнем третью строку (она подобна второй). Система совместна (имеет решение) при любом с. Пусть с=1.
или

Курсовая: Определители и системы линейных уравнений

1. Определители второго и третьего порядков и их свойства

1.1. Понятие матрицы и определителя второго порядка

Прямоугольную таблицу из чисел,

матрицей. Для обозначения матрицы используют либо сдвоенные вертикальные

черточки, либо круглые скобки. Например:

1 7 9.2 1 7 9.2

28 20 18 28 20 18

6 11 2 -6 11 2

Если число строк матрицы совпадает с числом ее столбцов, то матрица называется

квадратной. Числа, входящие в состав матрицы, называют ее элементами .

Рассмотрим квадратную матрицу, состоящую из четырех элементов:

Определителем второго порядка, соответствующим матрице (3.1), называется число,

и обозначаемое символом

Итак, по определению

Элементы, составляющие матрицу данного определителя, обычно называют

элементами этого определителя.

Справедливо следующее утверждение: для того чтобы определитель второго

порядка был равен нулю, необходимо и достаточно, чтобы элементы его строк (или

соответственно его столбцов) были пропорциональны .

Для доказательства этого утверждения достаточно заметить, что каждая из

пропорций /

эквивалентна равенству

А последнее равенство в силу (3.2) эквивалентно обращению в нуль определителя.

1.2. Система двух линейных уравнений с двумя неизвестными

Покажем, как применяются определители второго порядка для исследования и

отыскания решений системы двух линейных уравнений с двумя неизвестными

(коэффициенты ,

и свободные члены ,

считаются при этом заданными). Напомним, что пара чисел

Называется

решением системы (3.3), если подстановка этих чисел на место

и в данную систему

обращает оба уравнения (3.3) в тождества.

Умножая первое уравнение системы (3.3) на -

А второе - на -и

затем складывая полученные при этом равенства, получим

Аналогично путем умножения уравнений (3.3) на -исоответственно получим:

Введем следующие обозначения:

С помощью этих обозначений и выражения для определителя второго порядка

уравнения (3.4) и (3.5) могут быть переписаны в виде:

Определитель ,

составленный из коэффициентов при неизвестных системы (3.3), принято называть

определителем этой системы . Заметим, что определители

и получаются из

определителя системы

посредством замены его первого или соответственно второго столбца свободными

Могут представиться два случая: 1) определитель системы

отличен от нуля; 2) этот определитель равен нулю.

Рассмотрим сначала случай

0. Из уравнений (3.7) мы сразу же получаем формулы для неизвестных,

называемые формулами Крамера :

Полученные формулы Крамера (3.8) дают решение системы (3.7) и потому доказывают

единственность решения исходной системы (3.3). В самом деле, система (3.7)

является следствием системы (3.3), поэтому всякое решение системы (3.3) (в

случае, если оно существует!) должно являться решением и системы (3.7). Итак,

пока доказано, что если у исходной системы (3.3) существует при

0 решение, то это решение однозначно определяется формулами Крамера (3.8).

Легко убедиться и в существовании решения, т. е. в том. что при

0 два числа и

Определяемые формулами Крамера (3.8). будучи поставлены на место неизвестных в

уравнения (3.3), обращают эти уравнения в тождества. (Предоставляем читателю

самому расписать выражения для определителей

И убедиться в справедливости указанных тождеств.)

Мы приходим к следующему выводу: если определитель

системы (3.3) отличен от нуля, то существует, и притом единственное решение этой

системы, определяемое формулами Крамера (3.8).

Рассмотрим теперь случай, когда определитель

системы равен нулю . Могут представиться два подслучая : а) хотя

бы один из определителей

или , отличен от

нуля; б) оба определителя

и равны нулю. (если

определитель и

один из двух определителей

и равны нулю, то и

другой из указанных двух определителей равен нулю. В самом деле, пусть,

например = 0

Тогда из этих пропорций получим, что

В подслучае а) оказывается невозможным хотя бы одно из равенств (3.7), т. е.

система (3.7) не имеет решений, а поэтому не имеет решений и исходная система

(3.3) (следствием которой является система (3.7)).

В подслучае б) исходная система (3.3) имеет бесчисленное множество решений. В

самом деле, из равенств

0 и из утверждения в конце разд. 1.1 заключаем, что второе уравнение системы

(3.3) является следствием первого и его можно отбросить. Но одно уравнение с

двумя неизвестными

имеет бесконечно много решений (хотя бы один из коэффициентов

Или отличен от

нуля, и стоящее при нем неизвестное может быть определено из уравнения (3.9)

через произвольно заданное значение другого неизвестного).

Таким образом, если определитель

системы (3.3) равен нулю, то система (3.3) либо вовсе не имеет решений (в

случае, если хотя бы один из определителей

или отличен от

нуля), либо имеет бесчисленное множество решений (в случае, когда

0). В последнем

случае два уравнения (3.3) можно заменить одним и при решении его одно

неизвестное задавать произвольно.

Замечание . В случае, когда свободные члены

и равны нулю,

линейная система (3.3) называется однородной . Отметим, что однородная

система всегда имеет так называемое тривиальное решение:

0, = 0 (эти два

числа обращают оба однородных уравнения в тождества).

Если определитель однородной системы

отличен от нуля, то эта система имеет только тривиальное решение. Если же

= 0, то однородная система имеет бесчисленное множество решений (поскольку

для однородной системы возможность отсутствия решений исключена). Таким

образом, однородная система имеет нетривиальное решение в том и только в

том случае, когда определитель ее равен нулю.

Матрицы. Действия над матрицами. Свойства операций над матрицами. Виды матриц.

Матрицы (и соответственно математический раздел - матричная алгебра) имеют важное значение в прикладной математике, так как позволяют записать в достаточно простой форме значительную часть математических моделей объектов и процессов. Термин "матрица" появился в 1850 году. Впервые упоминались матрицы еще в древнем Китае, позднее у арабских математиков.

Матрицей A=A mn порядка m*n называется прямоугольная таблица чисел, содержащая m - строк и n - столбцов .

Элементы матрицы a ij , у которых i=j, называются диагональными и образуют главную диагональ .

Для квадратной матрицы (m=n) главную диагональ образуют элементы a 11 , a 22 ,..., a nn .

Равенство матриц.

A=B , если порядки матриц A и B одинаковы и a ij =b ij (i=1,2,...,m; j=1,2,...,n)

Действия над матрицами.

1. Сложение матриц - поэлементная операция

Вычитание матриц - поэлементная операция

3. Произведение матрицы на число - поэлементная операция

4. Умножение A*B матриц по правилу строка на столбец (число столбцов матрицы А должно быть равно числу строк матрицы B)

A mk *B kn =C mn причем каждый элемент с ij матрицы C mn равен сумме произведений элементов i-ой строки матрицы А на соответствующие элемеенты j-го столбца матрицы B.

Покажем операцию умножения матриц на примере:

6. Транспонирование матрицы А. Транспонированную матрицу обозначают A T или A"

Строки и столбцы поменялись местами

Пример

Свойства опeраций над матрицами

(A+B)+C=A+(B+C)

λ(A+B)=λA+λB

A(B+C)=AB+AC

(A+B)C=AC+BC

λ(AB)=(λA)B=A(λB)

A(BC)=(AB)C

Виды матриц

1. Прямоугольные: m и n - произвольные положительные целые числа

2. Квадратные: m=n

3. Матрица строка: m=1 . Например, (1 3 5 7) - во многих практических задачах такая матрица называется вектором

4. Матрица столбец: n=1 . Например

5. Диагональная матрица: m=n и a ij =0 , если i≠j . Например

6. Единичная матрица: m=n и

7. Нулевая матрица: a ij =0, i=1,2,...,m

j=1,2,...,n

8. Треугольная матрица: все элементы ниже главной диагонали равны 0.

9. Квадратная матрица:m=n и a ij =a ji (т.е. на симметричных относительно главной диагонали местах стоят равные элементы), а следовательноA"=A

Например,

Обра́тная ма́трица - такая матрица A −1 , при умножении на которую исходная матрица A даёт в результате единичную матрицу E :

Квадратная матрица обратима тогда и только тогда, когда она невырожденная, то есть её определитель не равен нулю. Для неквадратных матриц и вырожденных матриц обратных матриц не существует. Однако возможно обобщить это понятие и ввести псевдообратные матрицы, похожие на обратные по многим свойствам.

Примеры решения систем линейных алгебраических уравнений матричным методом.

Рассмотрим матричный метод на примерах. В некоторых примерах мы не будем подробно описывать процесс вычисления определителей матриц.

Пример.

С помощью обратной матрицы найдите решение системы линейных уравнений

.

Решение.

В матричной форме исходная система запишется как, где . Вычислим определитель основной матрицы и убедимся, что он отличен от нуля. В противном случае мы не сможем решить систему матричным методом. Имеем , следовательно, для матрицы А может быть найдена обратная матрица . Таким образом, если мы отыщем обратную матрицу, то искомое решение СЛАУ определим как . Итак, задача свелась к построению обратной матрицы . Найдем ее.

Обратную матрицу можно найти по следующей формуле :

, где – определитель матрицы А, – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

Понятие обратной матрицы существует только для квадратных матриц , матриц «два на два», «три на три» и т.д.

Полярные координаты. В полярной системе координат положение точки М

М

ПРЯМОУГОЛЬНЫЕ КООРДИНАТЫ В ПРОСТРАНСТВЕ

ПРЯМАЯ

1. Общее уравнение прямой. Всякое уравнение первой степени относительно х и у, т. е. уравнение вида:

(1) Ах+Ву+С=0 наз. общин уравнением прямой ( + ≠0),A,B,C-ПОСТОЯННЫЕ КОЭФИЦИЕНТЫ.






КРИВЫЕ ВТОРОГО ПОРЯДКА

1. Окружность. Окружность-это множество точек плоскости, равноудален-

равноудаленных от данной точки (центра). Если г - радиус окружности, а точка С (а; Ь) - ее центр, то уравнение окружности имеет вид:

Гипербола . Гиперболой называется множество точек плоскости, абсолютная

величина разности расстояний которых до двух данных точек, называемых фо-

кусами, есть величина постоянная (ее обозначают через 2а), причем эта постоянная меньше расстояния между фокусами. Если поместить фокусы гиперболы в точках F1 (с; 0) и F2(- с; 0), то получится каноническое уравнение гиперболы

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ

ПЛОСКОСТЬ И ПРЯМАЯ

плоскости,называемый нормальным вектором.

Поверхность второго порядка

Поверхность второго порядка - геометрическое место точек трёхмерного пространства, прямоугольные координаты которых удовлетворяют уравнению вида

в котором по крайней мере один из коэффициентов , , , , , отличен от нуля.

Типы поверхностей второго порядка

Цилиндрические поверхности

Поверхность называется цилиндрической поверхностью с образующей , если для любой точки этой поверхности прямая, проходящая через эту точку параллельно образующей , целиком принадлежит поверхности .

Теорема (об уравнении цилиндрической поверхности).
Если в некоторой декартовой прямоугольной системе координат поверхность имеет уравнение , то - цилиндрическая поверхность с образующей, параллельной оси .

Кривая, задаваемая уравнением в плоскости , называется направляющей цилиндрической поверхности.

Если направляющая цилиндрической поверхности задаётся кривой второго порядка, то такая поверхность называется цилиндрической поверхностью второго порядка .

Эллиптический цилиндр: Параболический цилиндр: Гиперболический цилиндр:
Пара совпавших прямых: Пара совпавших плоскостей: Пара пересекающихся плоскостей:

Конические поверхности

Коническая поверхность.

Основная статья: Коническая поверхность

Поверхность называется конической поверхностью с вершиной в точке , если для любой точки этой поверхности прямая, проходящая через и , целиком принадлежит этой поверхности.

Функция называется однородной порядка , если выполняется следующее:

Теорема (об уравнении конической поверхности).
Если в некоторой декартовой прямоугольной системе координат поверхность задана уравнением , где - однородная функция, то - коническая поверхность с вершиной в начале координат.

Если поверхность задана функцией , являющейся однородным алгебраическим многочленом второго порядка, то называется конической поверхностью второго порядка .

· Каноническое уравнение конуса второго порядка имеет вид:

Поверхности вращения ]

Поверхность называется поверхностью вращения вокруг оси , если для любой точки этой поверхности окружность, проходящая через эту точку в плоскости с центром в и радиусом , целиком принадлежит этой поверхности.

Теорема (об уравнении поверхности вращения).
Если в некоторой декартовой прямоугольной системе координат поверхность задана уравнением , то - поверхность вращения вокруг оси .

Эллипсоид: Однополостной гиперболоид: Двуполостной гиперболоид: Эллиптический параболоид:

В случае, если , перечисленные выше поверхности являются поверхностями вращения.

Эллиптический параболоид

Уравнение эллиптического параболоида имеет вид

Если , то эллиптический параболоид представляет собой поверхность вращения, образованную вращением параболы, параметр которой , вокруг вертикальной оси, проходящей через вершину и фокус данной параболы.

Пересечение эллиптического параболоида с плоскостью является эллипсом.

Пересечение эллиптического параболоида с плоскостью или является параболой.

Гиперболический параболоид ]

Гиперболический параболоид.

Уравнение гиперболического параболоида имеет вид

Пересечение гиперболического параболоида с плоскостью является гиперболой.

Пересечение гиперболического параболоида с плоскостью или является параболой.

Ввиду геометрической схожести гиперболический параболоид часто называют «седлом».

Центральные поверхности

Если центр поверхности второго порядка существует и единственен, то его координаты можно найти, решив систему уравнений:

Таким образом, знак, который при этом приписывается минору соответствующего элемента определителя, пределяется следующей таблицей:

В приведенном выше равенстве, выражающем определитель третьего порядка,

в правой части стоит сумма произведений элементов 1-й строки определителя на их алгебраические дополнения.

Теорема 1. Определитель третьего порядка равен сумме произведений

элементов любой его строки или столбца на их алгебраические дополнения.

Эта теорема позволяет вычислять значение определителя, раскрывая его по

элементам любой его строки или столбца.

Теорема 2. Сумма произведений элементов какой-либо строки (столбца)

определителя на алгебраические дополнения элементов другой строки (столбца) равна нулю.

Свойства определителей.

1°. Определитель не изменится, если строки определителя заменить столб-

цами, а столбцы-соответствующими строками.

2°. Общий множитель элементов какой-нибудь строки (или столбца) может

быть вынесен за знак определителя.

3°. Если элементы одной строки (столбца) определителя соответственно

равны элементам другой строки (столбца), то определитель равен нулю.

4°. При перестановке двух строк (столбцов) определитель меняет знак на

противоположный.

5°. Определитель не изменится, если к элементам одной строки (столбца)

прибавить соответственные элементы другой строки (столбца), умноженные на одно и то же число (теорема о линейной комбинации параллельных рядов определителя).

Решение системы трех линейных уравнений с тремя неизвестными .

находится по формулам Крамера

При этом предполагается, что D ≠0 (если D = 0, то исходная система либо неопределенная, либо несовместная).

Если,система однородная, т. е. имеет вид

и ее определитель отличен от нуля, то она имеет единственное решение х= 0,

Если же определитель однородной системы равен нулю, то система сводится

либо к двум независимым уравнениям (третье является их следствием), либо к

одному уравнению (остальные два являются его следствиями). Первый случай

имеет место тогда, когда среди миноров определителя однородной системы есть

хотя бы один отличный от нуля, второй-тогда, когда все миноры этого опреде лителя равны нулю. В обоих случаях однородная система имеет бесчисленное множество решений.

Вычислить определитель третьего порядка




Решение систем линейных алгебраических уравнений (СЛАУ), несомненно, является важнейшей темой курса линейной алгебры. Огромное количество задач из всех разделов математики сводится к решению систем линейных уравнений. Этими факторами объясняется причина создания данной статьи. Материал статьи подобран и структурирован так, что с его помощью Вы сможете

  • подобрать оптимальный метод решения Вашей системы линейных алгебраических уравнений,
  • изучить теорию выбранного метода,
  • решить Вашу систему линейных уравнений, рассмотрев подробно разобранные решения характерных примеров и задач.

Краткое описание материала статьи.

Сначала дадим все необходимые определения, понятия и введем обозначения.

Далее рассмотрим методы решения систем линейных алгебраических уравнений, в которых число уравнений равно числу неизвестных переменных и которые имеют единственное решение. Во-первых, остановимся на методе Крамера, во-вторых, покажем матричный метод решения таких систем уравнений, в-третьих, разберем метод Гаусса (метод последовательного исключения неизвестных переменных). Для закрепления теории обязательно решим несколько СЛАУ различными способами.

После этого перейдем к решению систем линейных алгебраических уравнений общего вида, в которых число уравнений не совпадает с числом неизвестных переменных или основная матрица системы является вырожденной. Сформулируем теорему Кронекера - Капелли, которая позволяет установить совместность СЛАУ. Разберем решение систем (в случае их совместности) с помощью понятия базисного минора матрицы. Также рассмотрим метод Гаусса и подробно опишем решения примеров.

Обязательно остановимся на структуре общего решения однородных и неоднородных систем линейных алгебраических уравнений. Дадим понятие фундаментальной системы решений и покажем, как записывается общее решение СЛАУ с помощью векторов фундаментальной системы решений. Для лучшего понимания разберем несколько примеров.

В заключении рассмотрим системы уравнений, сводящиеся к линейным, а также различные задачи, при решении которых возникают СЛАУ.

Навигация по странице.

Определения, понятия, обозначения.

Будем рассматривать системы из p линейных алгебраических уравнений с n неизвестными переменными (p может быть равно n ) вида

Неизвестные переменные, - коэффициенты (некоторые действительные или комплексные числа), - свободные члены (также действительные или комплексные числа).

Такую форму записи СЛАУ называют координатной .

В матричной форме записи эта система уравнений имеет вид ,
где - основная матрица системы, - матрица-столбец неизвестных переменных, - матрица-столбец свободных членов.

Если к матрице А добавить в качестве (n+1)-ого столбца матрицу-столбец свободных членов, то получим так называемую расширенную матрицу системы линейных уравнений. Обычно расширенную матрицу обозначают буквой Т , а столбец свободных членов отделяют вертикальной линией от остальных столбцов, то есть,

Решением системы линейных алгебраических уравнений называют набор значений неизвестных переменных , обращающий все уравнения системы в тождества. Матричное уравнение при данных значениях неизвестных переменных также обращается в тождество .

Если система уравнений имеет хотя бы одно решение, то она называется совместной .

Если система уравнений решений не имеет, то она называется несовместной .

Если СЛАУ имеет единственное решение, то ее называют определенной ; если решений больше одного, то – неопределенной .

Если свободные члены всех уравнений системы равны нулю , то система называется однородной , в противном случае – неоднородной .

Решение элементарных систем линейных алгебраических уравнений.

Если число уравнений системы равно числу неизвестных переменных и определитель ее основной матрицы не равен нулю, то такие СЛАУ будем называть элементарными . Такие системы уравнений имеют единственное решение, причем в случае однородной системы все неизвестные переменные равны нулю.

Такие СЛАУ мы начинали изучать в средней школе. При их решении мы брали какое-нибудь одно уравнение, выражали одну неизвестную переменную через другие и подставляли ее в оставшиеся уравнения, следом брали следующее уравнение, выражали следующую неизвестную переменную и подставляли в другие уравнения и так далее. Или пользовались методом сложения, то есть, складывали два или более уравнений, чтобы исключить некоторые неизвестные переменные. Не будем подробно останавливаться на этих методах, так как они по сути являются модификациями метода Гаусса.

Основными методами решения элементарных систем линейных уравнений являются метод Крамера, матричный метод и метод Гаусса. Разберем их.

Решение систем линейных уравнений методом Крамера.

Пусть нам требуется решить систему линейных алгебраических уравнений

в которой число уравнений равно числу неизвестных переменных и определитель основной матрицы системы отличен от нуля, то есть, .

Пусть - определитель основной матрицы системы, а - определители матриц, которые получаются из А заменой 1-ого, 2-ого, …, n-ого столбца соответственно на столбец свободных членов:

При таких обозначениях неизвестные переменные вычисляются по формулам метода Крамера как . Так находится решение системы линейных алгебраических уравнений методом Крамера.

Пример.

Методом Крамера .

Решение.

Основная матрица системы имеет вид . Вычислим ее определитель (при необходимости смотрите статью ):

Так как определитель основной матрицы системы отличен от нуля, то система имеет единственное решение, которое может быть найдено методом Крамера.

Составим и вычислим необходимые определители (определитель получаем, заменив в матрице А первый столбец на столбец свободных членов , определитель - заменив второй столбец на столбец свободных членов, - заменив третий столбец матрицы А на столбец свободных членов):

Находим неизвестные переменные по формулам :

Ответ:

Основным недостатком метода Крамера (если это можно назвать недостатком) является трудоемкость вычисления определителей, когда число уравнений системы больше трех.

Решение систем линейных алгебраических уравнений матричным методом (с помощью обратной матрицы).

Пусть система линейных алгебраических уравнений задана в матричной форме , где матрица A имеет размерность n на n и ее определитель отличен от нуля.

Так как , то матрица А – обратима, то есть, существует обратная матрица . Если умножить обе части равенства на слева, то получим формулу для нахождения матрицы-столбца неизвестных переменных . Так мы получили решение системы линейных алгебраических уравнений матричным методом.

Пример.

Решите систему линейных уравнений матричным методом.

Решение.

Перепишем систему уравнений в матричной форме:

Так как

то СЛАУ можно решать матричным методом. С помощью обратной матрицы решение этой системы может быть найдено как .

Построим обратную матрицу с помощью матрицы из алгебраических дополнений элементов матрицы А (при необходимости смотрите статью ):

Осталось вычислить - матрицу неизвестных переменных, умножив обратную матрицу на матрицу-столбец свободных членов (при необходимости смотрите статью ):

Ответ:

или в другой записи x 1 = 4, x 2 = 0, x 3 = -1 .

Основная проблема при нахождении решения систем линейных алгебраических уравнений матричным методом заключается в трудоемкости нахождения обратной матрицы, особенно для квадратных матриц порядка выше третьего.

Решение систем линейных уравнений методом Гаусса.

Пусть нам требуется найти решение системы из n линейных уравнений с n неизвестными переменными
определитель основной матрицы которой отличен от нуля.

Суть метода Гаусса состоит в последовательном исключении неизвестных переменных: сначала исключается x 1 из всех уравнений системы, начиная со второго, далее исключается x 2 из всех уравнений, начиная с третьего, и так далее, пока в последнем уравнении останется только неизвестная переменная x n . Такой процесс преобразования уравнений системы для последовательного исключения неизвестных переменных называется прямым ходом метода Гаусса . После завершения прямого хода метода Гаусса из последнего уравнения находится x n , с помощью этого значения из предпоследнего уравнения вычисляется x n-1 , и так далее, из первого уравнения находится x 1 . Процесс вычисления неизвестных переменных при движении от последнего уравнения системы к первому называется обратным ходом метода Гаусса .

Кратко опишем алгоритм исключения неизвестных переменных.

Будем считать, что , так как мы всегда можем этого добиться перестановкой местами уравнений системы. Исключим неизвестную переменную x 1 из всех уравнений системы, начиная со второго. Для этого ко второму уравнению системы прибавим первое, умноженное на , к третьему уравнению прибавим первое, умноженное на , и так далее, к n-ому уравнению прибавим первое, умноженное на . Система уравнений после таких преобразований примет вид

где , а .

К такому же результату мы бы пришли, если бы выразили x 1 через другие неизвестные переменные в первом уравнении системы и полученное выражение подставили во все остальные уравнения. Таким образом, переменная x 1 исключена из всех уравнений, начиная со второго.

Далее действуем аналогично, но лишь с частью полученной системы, которая отмечена на рисунке

Для этого к третьему уравнению системы прибавим второе, умноженное на , к четвертому уравнению прибавим второе, умноженное на , и так далее, к n-ому уравнению прибавим второе, умноженное на . Система уравнений после таких преобразований примет вид

где , а . Таким образом, переменная x 2 исключена из всех уравнений, начиная с третьего.

Далее приступаем к исключению неизвестной x 3 , при этом действуем аналогично с отмеченной на рисунке частью системы

Так продолжаем прямой ход метода Гаусса пока система не примет вид

С этого момента начинаем обратный ход метода Гаусса: вычисляем x n из последнего уравнения как , с помощью полученного значения x n находим x n-1 из предпоследнего уравнения, и так далее, находим x 1 из первого уравнения.

Пример.

Решите систему линейных уравнений методом Гаусса.

Решение.

Исключим неизвестную переменную x 1 из второго и третьего уравнения системы. Для этого к обеим частям второго и третьего уравнений прибавим соответствующие части первого уравнения, умноженные на и на соответственно:

Теперь из третьего уравнения исключим x 2 , прибавив к его левой и правой частям левую и правую части второго уравнения, умноженные на :

На этом прямой ход метода Гаусса закончен, начинаем обратный ход.

Из последнего уравнения полученной системы уравнений находим x 3 :

Из второго уравнения получаем .

Из первого уравнения находим оставшуюся неизвестную переменную и этим завершаем обратный ход метода Гаусса .

Ответ:

X 1 = 4, x 2 = 0, x 3 = -1 .

Решение систем линейных алгебраических уравнений общего вида.

В общем случае число уравнений системы p не совпадает с числом неизвестных переменных n :

Такие СЛАУ могут не иметь решений, иметь единственное решение или иметь бесконечно много решений. Это утверждение относится также к системам уравнений, основная матрица которых квадратная и вырожденная.

Теорема Кронекера – Капелли.

Прежде чем находить решение системы линейных уравнений необходимо установить ее совместность. Ответ на вопрос когда СЛАУ совместна, а когда несовместна, дает теорема Кронекера – Капелли :
для того, чтобы система из p уравнений с n неизвестными (p может быть равно n ) была совместна необходимо и достаточно, чтобы ранг основной матрицы системы был равен рангу расширенной матрицы, то есть, Rank(A)=Rank(T) .

Рассмотрим на примере применение теоремы Кронекера – Капелли для определения совместности системы линейных уравнений.

Пример.

Выясните, имеет ли система линейных уравнений решения.

Решение.

. Воспользуемся методом окаймляющих миноров. Минор второго порядка отличен от нуля. Переберем окаймляющие его миноры третьего порядка:

Так как все окаймляющие миноры третьего порядка равны нулю, то ранг основной матрицы равен двум.

В свою очередь ранг расширенной матрицы равен трем, так как минор третьего порядка

отличен от нуля.

Таким образом, Rang(A) , следовательно, по теореме Кронекера – Капелли можно сделать вывод, что исходная система линейных уравнений несовместна.

Ответ:

Система решений не имеет.

Итак, мы научились устанавливать несовместность системы с помощью теоремы Кронекера – Капелли.

А как же находить решение СЛАУ, если установлена ее совместность?

Для этого нам потребуется понятие базисного минора матрицы и теорема о ранге матрицы.

Минор наивысшего порядка матрицы А , отличный от нуля, называется базисным .

Из определения базисного минора следует, что его порядок равен рангу матрицы. Для ненулевой матрицы А базисных миноров может быть несколько, один базисный минор есть всегда.

Для примера рассмотрим матрицу .

Все миноры третьего порядка этой матрицы равны нулю, так как элементы третьей строки этой матрицы представляют собой сумму соответствующих элементов первой и второй строк.

Базисными являются следующие миноры второго порядка, так как они отличны от нуля

Миноры базисными не являются, так как равны нулю.

Теорема о ранге матрицы.

Если ранг матрицы порядка p на n равен r , то все элементы строк (и столбцов) матрицы, не образующие выбранный базисный минор, линейно выражаются через соответствующие элементы строк (и столбцов), образующих базисный минор.

Что нам дает теорема о ранге матрицы?

Если по теореме Кронекера – Капелли мы установили совместность системы, то выбираем любой базисный минор основной матрицы системы (его порядок равен r ), и исключаем из системы все уравнения, которые не образуют выбранный базисный минор. Полученная таким образом СЛАУ будет эквивалентна исходной, так как отброшенные уравнения все равно излишни (они согласно теореме о ранге матрицы являются линейной комбинацией оставшихся уравнений).

В итоге, после отбрасывания излишних уравнений системы, возможны два случая.

    Если число уравнений r в полученной системе будет равно числу неизвестных переменных, то она будет определенной и единственное решение можно будет найти методом Крамера, матричным методом или методом Гаусса.

    Пример.

    .

    Решение.

    Ранг основной матрицы системы равен двум, так как минор второго порядка отличен от нуля. Ранг расширенной матрицы также равен двум, так как единственный минор третьего порядка равен нулю

    а рассмотренный выше минор второго порядка отличен от нуля. На основании теоремы Кронекера – Капелли можно утверждать совместность исходной системы линейных уравнений, так как Rank(A)=Rank(T)=2 .

    В качестве базисного минора возьмем . Его образуют коэффициенты первого и второго уравнений:

    Третье уравнение системы не участвует в образовании базисного минора, поэтому исключим его из системы на основании теоремы о ранге матрицы:

    Так мы получили элементарную систему линейных алгебраических уравнений. Решим ее методом Крамера:

    Ответ:

    x 1 = 1, x 2 = 2 .

    Если число уравнений r в полученной СЛАУ меньше числа неизвестных переменных n , то в левых частях уравнений оставляем слагаемые, образующие базисный минор, остальные слагаемые переносим в правые части уравнений системы с противоположным знаком.

    Неизвестные переменные (их r штук), оставшиеся в левых частях уравнений, называются основными .

    Неизвестные переменные (их n - r штук), которые оказались в правых частях, называются свободными .

    Теперь считаем, что свободные неизвестные переменные могут принимать произвольные значения, при этом r основных неизвестных переменных будут выражаться через свободные неизвестные переменные единственным образом. Их выражение можно найти решая полученную СЛАУ методом Крамера, матричным методом или методом Гаусса.

    Разберем на примере.

    Пример.

    Решите систему линейных алгебраических уравнений .

    Решение.

    Найдем ранг основной матрицы системы методом окаймляющих миноров. В качестве ненулевого минора первого порядка возьмем a 1 1 = 1 . Начнем поиск ненулевого минора второго порядка, окаймляющего данный минор:

    Так мы нашли ненулевой минор второго порядка. Начнем поиск ненулевого окаймляющего минора третьего порядка:

    Таким образом, ранг основной матрицы равен трем. Ранг расширенной матрицы также равен трем, то есть, система совместна.

    Найденный ненулевой минор третьего порядка возьмем в качестве базисного.

    Для наглядности покажем элементы, образующие базисный минор:

    Оставляем в левой части уравнений системы слагаемые, участвующие в базисном миноре, остальные переносим с противоположными знаками в правые части:

    Придадим свободным неизвестным переменным x 2 и x 5 произвольные значения, то есть, примем , где - произвольные числа. При этом СЛАУ примет вид

    Полученную элементарную систему линейных алгебраических уравнений решим методом Крамера:

    Следовательно, .

    В ответе не забываем указать свободные неизвестные переменные.

    Ответ:

    Где - произвольные числа.

Подведем итог.

Чтобы решить систему линейных алгебраических уравнений общего вида, сначала выясняем ее совместность, используя теорему Кронекера – Капелли. Если ранг основной матрицы не равен рангу расширенной матрицы, то делаем вывод о несовместности системы.

Если ранг основной матрицы равен рангу расширенной матрицы, то выбираем базисный минор и отбрасываем уравнения системы, которые не участвуют в образовании выбранного базисного минора.

Если порядок базисного минора равен числу неизвестных переменных, то СЛАУ имеет единственное решение, которое находим любым известным нам методом.

Если порядок базисного минора меньше числа неизвестных переменных, то в левой части уравнений системы оставляем слагаемые с основными неизвестными переменными, остальные слагаемые переносим в правые части и придаем свободным неизвестным переменным произвольные значения. Из полученной системы линейных уравнений находим основные неизвестные переменные методом Крамера, матричным методом или методом Гаусса.

Метод Гаусса для решения систем линейных алгебраических уравнений общего вида.

Методом Гаусса можно решать системы линейных алгебраических уравнений любого вида без предварительного их исследования на совместность. Процесс последовательного исключения неизвестных переменных позволяет сделать вывод как о совместности, так и о несовместности СЛАУ, а в случае существования решения дает возможность отыскать его.

С точки зрения вычислительной работы метод Гаусса является предпочтительным.

Смотрите его подробное описание и разобранные примеры в статье метод Гаусса для решения систем линейных алгебраических уравнений общего вида .

Запись общего решения однородных и неоднородных систем линейных алгебраических с помощью векторов фундаментальной системы решений.

В этом разделе речь пойдет о совместных однородных и неоднородных системах линейных алгебраических уравнений, имеющих бесконечное множество решений.

Разберемся сначала с однородными системами.

Фундаментальной системой решений однородной системы из p линейных алгебраических уравнений с n неизвестными переменными называют совокупность (n – r) линейно независимых решений этой системы, где r – порядок базисного минора основной матрицы системы.

Если обозначить линейно независимые решения однородной СЛАУ как X (1) , X (2) , …, X (n-r) (X (1) , X (2) , …, X (n-r) – это матрицы столбцы размерности n на 1 ), то общее решение этой однородной системы представляется в виде линейной комбинации векторов фундаментальной системы решений с произвольными постоянными коэффициентами С 1 , С 2 , …, С (n-r) , то есть, .

Что обозначает термин общее решение однородной системы линейных алгебраических уравнений (орослау)?

Смысл прост: формула задает все возможные решения исходной СЛАУ, другими словами, взяв любой набор значений произвольных постоянных С 1 , С 2 , …, С (n-r) , по формуле мы получим одно из решений исходной однородной СЛАУ.

Таким образом, если мы найдем фундаментальную систему решений, то мы сможем задать все решения этой однородной СЛАУ как .

Покажем процесс построения фундаментальной системы решений однородной СЛАУ.

Выбираем базисный минор исходной системы линейных уравнений, исключаем все остальные уравнения из системы и переносим в правые части уравнений системы с противоположными знаками все слагаемые, содержащие свободные неизвестные переменные. Придадим свободным неизвестным переменным значения 1,0,0,…,0 и вычислим основные неизвестные, решив полученную элементарную систему линейных уравнений любым способом, например, методом Крамера. Так будет получено X (1) - первое решение фундаментальной системы. Если придать свободным неизвестным значения 0,1,0,0,…,0 и вычислить при этом основные неизвестные, то получим X (2) . И так далее. Если свободным неизвестным переменным придадим значения 0,0,…,0,1 и вычислим основные неизвестные, то получим X (n-r) . Так будет построена фундаментальная система решений однородной СЛАУ и может быть записано ее общее решение в виде .

Для неоднородных систем линейных алгебраических уравнений общее решение представляется в виде , где - общее решение соответствующей однородной системы, а - частное решение исходной неоднородной СЛАУ, которое мы получаем, придав свободным неизвестным значения 0,0,…,0 и вычислив значения основных неизвестных.

Разберем на примерах.

Пример.

Найдите фундаментальную систему решений и общее решение однородной системы линейных алгебраических уравнений .

Решение.

Ранг основной матрицы однородных систем линейных уравнений всегда равен рангу расширенной матрицы. Найдем ранг основной матрицы методом окаймляющих миноров. В качестве ненулевого минора первого порядка возьмем элемент a 1 1 = 9 основной матрицы системы. Найдем окаймляющий ненулевой минор второго порядка:

Минор второго порядка, отличный от нуля, найден. Переберем окаймляющие его миноры третьего порядка в поисках ненулевого:

Все окаймляющие миноры третьего порядка равны нулю, следовательно, ранг основной и расширенной матрицы равен двум. Базисным минором возьмем . Отметим для наглядности элементы системы, которые его образуют:

Третье уравнение исходной СЛАУ не участвует в образовании базисного минора, поэтому, может быть исключено:

Оставляем в правых частях уравнений слагаемые, содержащие основные неизвестные, а в правые части переносим слагаемые со свободными неизвестными:

Построим фундаментальную систему решений исходной однородной системы линейных уравнений. Фундаментальная система решений данной СЛАУ состоит из двух решений, так как исходная СЛАУ содержит четыре неизвестных переменных, а порядок ее базисного минора равен двум. Для нахождения X (1) придадим свободным неизвестным переменным значения x 2 = 1, x 4 = 0 , тогда основные неизвестные найдем из системы уравнений
.

Решим ее методом Крамера:

Таким образом, .

Теперь построим X (2) . Для этого придадим свободным неизвестным переменным значения x 2 = 0, x 4 = 1 , тогда основные неизвестные найдем из системы линейных уравнений
.

Опять воспользуемся методом Крамера:

Получаем .

Так мы получили два вектора фундаментальной системы решений и , теперь мы можем записать общее решение однородной системы линейных алгебраических уравнений:

, где C 1 и C 2 – произвольные числа. , равны нулю. Также примем минор в качестве базисного, исключим третье уравнение из системы и перенесем слагаемые со свободными неизвестными в правые части уравнений системы:

Для нахождения придадим свободным неизвестным переменным значения x 2 = 0 и x 4 = 0 , тогда система уравнений примет вид , откуда методом Крамера найдем основные неизвестные переменные:

Имеем , следовательно,

где C 1 и C 2 – произвольные числа.

Следует заметить, что решения неопределенной однородной системы линейных алгебраических уравнений порождают линейное пространство

Решение.

Каноническое уравнение эллипсоида в прямоугольной декартовой системе координат имеет вид . Наша задача состоит в определении параметров a , b и с . Так как эллипсоид проходит через точки А , В и С , то при подстановке их координат в каноническое уравнение эллипсоида оно должно обращаться в тождество. Так мы получим систему из трех уравнений:

Обозначим , тогда система станет системой линейных алгебраических уравнений .

Вычислим определитель основной матрицы системы:

Так как он отличен от нуля, то решение мы можем найти методом Крамера:
). Очевидно, что x = 0 и x = 1 являются корнями этого многочлена. Частным от деления на является . Таким образом, имеем разложение и исходное выражение примет вид .

Воспользуемся методом неопределенных коэффициентов.

Приравняв соответствующие коэффициенты числителей, приходим к системе линейных алгебраических уравнений . Ее решение даст нам искомые неопределенные коэффициенты А , В , С и D .

Решим систему методом Гаусса:

При обратном ходе метода Гаусса находим D = 0, C = -2, B = 1, A = 1 .

Получаем,

Ответ:

.