Водоснабжение

Плазменный резак из сварочного инвертора. Изготовление плазменного резака из инвертора своими руками

Плазменный резак из сварочного инвертора. Изготовление плазменного резака из инвертора своими руками

Плазменная резка активно используется во многих промышленных областях. Однако плазморез вполне способен пригодиться частному мастеру. Аппарат позволяет с высокой скоростью и качеством резать любые токопроводящие и не токопроводящие материалы. Технология работы создает возможность обработки любых деталей или создания фигурных резов, которая осуществляется дугой плазмы высокой температурой. Создается поток базовыми составляющими – электрическим током и воздухом. Но выгоды от использования аппарата несколько омрачаются ценой заводских моделей. Чтобы обеспечить себя возможностью работы можно создать плазморез своими руками. Далее приводим подробную инструкцию с порядком действий и перечнем оборудования, которое необходимо.

Что выбрать: трансформатор или инвертор?

За счет наличия особенностей и параметров аппаратов для проведения плазменной резки возможно разделить их на типы. Наибольшую популярность завоевали инверторы и трансформаторы. Стоимость аппарата каждой модели будет определяться заявленной мощностью и рабочими циклами.

Инверторы обладают малым весом, компактными габаритами и минимально потребляют электроэнергию. К недостаткам оборудования можно отнести повышенную чувствительность к перепадам напряжения. Не каждый инвертор способен функционировать в особенностях режима нашей электрической сети. Если выходит из строя система защиты аппарата, то необходимо обращаться в сервисный центр. Также инверторные плазморезы обладают ограничением по номинальной мощности – не более 70 ампер и малым периодом включения оборудования при большом токе.

Трансформатор, по традиции, считается более надежным, чем инвертор. Они даже при ощутимом падении напряжения теряют только часть мощности, но не ломаются. Это свойство определяет более высокую стоимость. Плазморезы на основе трансформатора могут работать и включаться в рабочий режим на больший срок. Подобное оборудование применяется в автоматических линиях с ЧПУ. Отрицательным моментом трансформаторного плазмореза будет значительная масса, высокое энергопотребление и размеры.

Наибольшее значение толщины металла, которое способен резать плазморез составляет от 50 до 55 миллиметров. Среднее значение мощности оборудования равняется 150 – 180 А.

Средняя стоимость заводских аппаратов

Ассортимент плазморезов для ручной резки материалов сейчас поистине огромен. Ценовые категории также различны. Цену аппаратов определяют следующие факторы:

  • Тип устройства;
  • Производитель и страна производства;
  • Максимально возможная глубина реза;
  • Модель.

Решив изучить возможность покупки плазмореза, необходимо интересоваться стоимостью дополнительных элементов и комплектующих к оборудованию, без которых полноценно работать будет сложно. Средние цены на аппараты в зависимости от толщины разрезаемого металла составляют:

  • До 6 мм – 15 000 – 20 000 рублей;
  • До 10 мм – 20 000 – 25 000;
  • До 12 мм – 32 000 – 230 000;
  • До 17 мм – 45 000 – 270 000;
  • До 25 мм – 81 000 – 220 000;
  • До 30 мм – 150 000 – 300 000.

Популярными аппаратами являются «Горыныч», «Ресанта» ИПР-25, ИПР-40, ИПР-40 К.

Как можно увидеть ценовой диапазон обширен. В связи с этим актуальность самодельного плазмореза повышается. Изучив инструкции вполне можно создать аппарат, ничуть не уступающих по техническим характеристикам. Подобрать инвертор или трансформатор можно по цене существенно ниже, чем представленные расценки.

Принцип действия

После нажатия на кнопку розжига происходит пуск источника электроэнергии, подающий в рабочий инструмент высокочастотный ток. Возникает дуга (дежурная) между расположенным в резаке (плазмотроне) наконечником и электродом. Температурный диапазон от 6 до 8 тысяч градусов. Стоит заметить, что рабочая дуга создается не моментально, существует определенная задержка.

Затем в полость плазмотрона поступает сжатый воздух. Для этого предназначается компрессор. Проходя сквозь камеру с дежурной дугой на электроде, он подвергается нагреву и увеличивается в объеме. Процесс сопровождается ионизацией воздуха, что переводит его в токопроводящее состояние.

Через узкое сопло плазмотрона полученный поток плазмы подается к обрабатываемой детали. Скорость потока составляет 2 – 3 м/с. Воздух в ионизированном состоянии способен нагреваться до 30 000°С. В этом состоянии значение электропроводимость воздуха близка к проводимости металлических элементов.

После контакта плазмы с разрезаемой поверхностью дежурная дуга отключается и действовать начинает рабочая. Далее осуществляется плавка в точках резки, из которых расплавленный металл продувается подаваемым воздухом.

Отличия аппаратов прямого и косвенного действия

Имеются различные типы аппаратов, отличающихся принципами работы. В оборудовании прямого действия предполагается работа электрической дуги. Она приобретает цилиндрическую форму и непосредственно соединяется с газовой струёй. Подобная конструкция оборудования позволяет обеспечить высокую температуру дуге (до 20 000°С) и высокоэффективную охлаждающую систему для других компонентов плазмореза.

В аппаратах косвенного действия работа предполагается с меньшим КПД. Это определяет их меньшее распространение в производстве. Конструктивная особенность оборудования состоит в том, что активные точки цепи размещаются на особых вольфрамовых электродах или трубе. Применяются они чаще для проведения нагрева и напыления, но для резки практически не используются. Чаще всего применяются в ремонте автомобилей.

Общей чертой является присутствие в конструкции воздушного фильтра (продлевает срок эксплуатации электрода, обеспечивает быстрый запуск оборудования) и охладителя (создает условия для длительной эксплуатации аппарата без перерыва). Отличным показателем является возможность непрерывной работы устройства на протяжении 1 часа с 20-минутным перерывом.

Конструкция

При должном желании и умении самодельный плазморез способен создать любой желающий. Но чтобы он мог полноценно и эффективно функционировать необходимо соблюдать определенные правила. Желательно примерять инвертор, т.к. именно он способен обеспечить стабильную подачу тока и стабильную работу дуги. В результате не возникают перебои и значительно уменьшится расход электричества. Но стоит учесть, что плазморез на основе инвертора способен справиться с меньшей толщиной металла, чем трансформатор.

Необходимые комплектующие

Перед началом сборочных работ необходимо подготовить ряд комплектующих, материалов и оборудования:

  1. Инвертор или трансформатор с подходящей мощностью. Чтобы исключить ошибку необходимо определиться с планируемой толщиной резания. Уже на основании этой информации подбирать нужное устройство. Однако с учетом ручной резки стоит выбрать именно инвертор, т.к. он меньше весит и потребляет меньше электричества.
  2. Плазмотрон или плазменный резак. Тоже имеются свои особенности выбора. Прямого действия лучше выбирать для работы с токопроводящими материалами, а косвенного – для не токопроводящих.
  3. Компрессор сжатого воздуха. Требуется уделять внимание номинальной мощности, т.к он обязан справляться с возлагаемой нагрузкой и соответствовать остальным компонентам.
    Кабель-шланг. Требуется для соединения всех комплектующих плазмореза и подачи воздуха к плазмотрону.

Подбор блока питания

Работу плазмореза обеспечивает блок питания. Он формирует заданные параметры электрического тока, напряжения и подает их к режущему узлу. Основным питающим узлом может стать:

  • Инвертор;
  • Трансформатор.

Подходить к выбору питающего элемента необходимо, учитывая особенности аппаратов, описанные выше.

Плазмотрон

Плазмотрон является генератором плазмы. Это рабочий инструмент, в котором формируется плазменная струя, непосредственно разрезающая материалы.

Основными особенностями устройства являются:

  • Создание сверхвысокой температуры;
  • Простая регулировка мощности тока, запуска и остановки рабочих режимов;
  • Компактные габариты;
  • Надежность работы.

Конструктивно плазмотрон состоит из:

  • Электрод/катод, имеющие в своем составе цирконий или гафний. Эти металлы отличаются высоким уровнем термоэлектронной эмиссией;
  • Сопло в основном изолируется от электрода;
  • Механизм, закручивающий плазмообразующий газ.

Сопло, электрод являются расходными материалами плазмотрона. Если плазморезом обрабатывается заготовка до 10 миллиметров, то один комплект электродов расходуется в течение 8 часов работы. Износ происходит равномерно, что позволяет менять их одновременно.

При несвоевременной замене электрода может нарушаться качество резки – изменяется геометрия реза или возникают волны на поверхности. В катоде постепенно выгорает гафниевая вставка. Если она обладает выработкой более 2 миллиметров, то электрод может пригорать и перегревать плазмотрон. Это значит, что не вовремя замененные электроды повлекут за собой быстрый выход из строя остальных элементов рабочего инструмента.

Все плазмотроны можно разделить на 3 объемные группы:

  • Электродуговой – имеет минимум один анод и катод, которые подключены к источнику питания с постоянным током;
  • Высокочастотный – отсутствуют и электроды, и катоды. Связь с питающим устройством основывается на индуктивных/емкостных принципах;
  • Комбинированный – функционирует при воздействии высокочастотного тока и горении дуговых разрядов.

Исходя из метода стабилизации дуги, все плазмотроны также можно разделить на газовый, водяной и магнитный типы. Подобная система является чрезвычайно важной для работы инструмента, т.к. она формирует сжатие потока и фиксирует его на центральной оси сопла.

В настоящее время в продаже имеются различные модификации плазмотронов. Возможно, необходимо изучить предложения, и купить готовый. Однако сделать самодельный в домашних условиях вполне возможно. Для этого требуется:

  • Рукоятка. Необходимо предусмотреть отверстия для проводов.
  • Кнопка.
  • Соответствующий электрод, рассчитанный под действующий ток.
  • Изолятор.
  • Завихритель потока.
  • Сопло. Желательно комплект с различными диаметрами.
  • Наконечник. Необходимо предусмотреть защиту от брызг.
  • Дистанционная пружина. Позволяет выдерживать зазор между поверхностью и соплом.
  • Насадка для удаления нагара и снятия фаски.

Проводить работу можно одним плазмотроном за счет сменных оголовков с различными диаметрами, направляющие плазменный поток на деталь. Необходимо обратить внимание, что они, так же как и электроды, в процессе работы станут оплавляться.

Сопло закрепляется прижимной гайкой. Непосредственно за ним находится электрод и изолятор, предупреждающий розжиг дуги в неположенном месте. Далее размещен завихритель потока, позволяющий усилить эффект дуги. Все элементы размещаются во фторопластовом корпусе. Что-то возможно сделать самостоятельно, а что-то придется приобретать в магазине.

Заводской плазмотрон позволит проводить работу без перегрева более длительное время за счет системы воздушного охлаждения. Однако при кратковременной резке это неважный параметр.

Осциллятор

Осциллятор представляет собой генератор, который вырабатывает высокочастотный ток. Подобный элемент включается в цепь плазмореза между источником питания и плазмотроном. Способны действовать по одной из схем:

  1. Создание кратковременного импульса, который способствует возникновению дуги без прикосновения к поверхности изделия. Внешне представляет собой малую молнию, подаваемую с торца электрода.
  2. Поддержка постоянного напряжения с высоким значением напряжения, накладываемое на сварочный ток. Обеспечивает сохранность стабильного поддержания дуги.

Оборудование позволяет быстро создавать дугу и приступать к резке металла.

В основной своей массе обладают схожим строением и состоят из:

  • Выпрямителя напряжения;
  • Блока накопителя заряда (конденсаторы);
  • Блок питания;
  • Модуль создания импульсов. Включает в себя колебательный контур и разрядник;
  • Блок управления;
  • Повышающего трансформатора;
  • Прибора контроля напряжения.

Основной задачей является модернизация входящего напряжения. Происходит повышение частоты и уровня напряжения, уменьшая период действия менее 1 секунды. Последовательность работы следующая:

  1. Нажимается кнопка на резаке;
  2. В выпрямителе ток выравнивается и становится однонаправленным;
  3. В конденсаторах происходит накопление заряда;
  4. Ток подается на колебательный контур трансформаторных обмоток, повышая уровень напряжения;
  5. Контроль за импульсом осуществляет схема управления;
  6. Импульсом создается разряд на электроде, поджигающий дугу;
  7. Действие импульса завершается;
  8. После прекращения резки осциллятором производится продувка плазмотрона на протяжении еще 4 секунд. За счет этого достигается охлаждение электрода и обрабатываемой поверхности.

В зависимости от типа осциллятора он может применяться по-разному. Однако общей характеристикой является повышение напряжения до 3000 – 5000 вольт и частоты от 150 до 500 кГц. Основные же отличия состоят в интервалах действия высокочастотного тока.

Для использования в плазморезе целесообразно использовать осциллятор для бесконтактного розжига дуги. Подобные элементы применяются для работы в аргоновых сварочниках. В них вольфрамовые электроды будут быстро затупляться если производить контакт с изделием. Включение в схему аппарата осциллятора позволит создавать дугу не совершая контакта с плоскостью детали.

Использование осциллятора позволяет существенно снижать потребность в дорогих расходных материалах и улучшать процесс резки. Правильно подобранное оборудование в соответствии с планируемой работой позволяет повышать ее качество и скорость.

Электроды

Электродам отводится немаловажная роль в процессе создания, поддержания дуги и непосредственной резки. В составе присутствуют металлы, позволяющие электроду не перегреваться и преждевременно не разрушаться при работе с дугой в высокотемпературных режимах.

При покупке электродов для плазмореза необходимо уточнять их состав. С содержанием бериллия и тория создаются вредные пары. Они подойдут для работы в соответствующих условиях, с надлежащей защитой работника, т. е. требуется дополнительная вентиляция. Из-за этого для применения в быту лучше покупать гафниевые электроды.

Компрессор и кабель - шланги

В конструкции большинства самодельных плазморезов включаются компрессоры и шланговые трасы для направления воздуха к плазмотрону. Данный элемент конструкции позволяет разогревать электрическую дугу до 8000°С. Дополнительной функцией является продувка рабочих каналов, очищая их от загрязнений и проводя удаление конденсата. Кроме этого, сжатый воздух способствует охлаждению компонентов аппарата при длительной работе.

Для работы плазмореза возможно применять обычный компрессор сжатого воздуха. Воздухообмен осуществляется тонкими шлангами с подходящими разъемами. На входе размещается электрический клапан, который регулирует процесс подачи воздуха.

В канале от аппарата к горелке размещается электрический кабель. Поэтому здесь необходимо размещать шланг с большим диаметром, в котором может разместиться кабель. Проходящий воздух несет и вентиляционную функцию, так как способен охладить провод.

Масса должна выполняться из кабеля с сечением от 5 мм2. Должен быть зажим. При плохом контакте массы переключение рабочей дуги на дежурную будет проблематичным.

Схемы

Сейчас можно найти множество схем, по которым можно собрать качественный аппарат. Подробно с условными обозначениями помогут разобраться видео. Подходящий принципиальный чертеж оборудования можно выбрать из представленных ниже.






Сборка

До начала сборочного процесса желательно уточнить совместимость подобранных комплектующих. Если вам ранее не приходилось собирать плазменный резак своими руками, то необходимо консультироваться с опытными мастерами.

Процедура сборки предполагает следующую последовательность:

  1. Подготовить все собранные комплектующие;
  2. Сборка электрической цепи. В соответствии со схемой подключается инвертор/трансформатор, электрический кабель;
  3. Подключение компрессора и подачи воздуха к аппарату и плазмотрону с помощью гибких шлангов;
  4. Для собственной подстраховки можно использовать источник бесперебойного питания (ИБП), учитывая емкость аккумулятора.

Подробная технология сборки оборудования представлена на видео.

Проверка плазмореза

После того как подключены все узлы в единую конструкции, необходимо провести проверку на работоспособность.

Обратим внимание на то, что проверка и работа с плазморезом должна осуществляться в защитной одежде с применением средств индивидуальной защиты.

Необходимо включить все агрегаты и нажать кнопку на плазмотроне, подав электричество к электроду. В этот момент в плазмотроне должна образоваться дуга с высокой температурой, проскочив между электродом и соплом.

Если собранное оборудование для плазменной резки способно резать металл толщиной до 2 см, то все сделано верно. Следует учесть, что самодельный аппарат из инвертора не сможет разрезать детали с толщиной более 20 миллиметров, так как недостаточно мощности. Для резки толстых изделий потребуется в качестве источника питания использовать трансформатор.

Достоинства самодельного аппарата

Выгоды, предоставляемые аппаратом воздушно-плазменной резки сложно переоценивать. Он способен точно резать листовой металл. После работы не требуется дополнительно обрабатывать торцы. Главным преимуществом является сокращение времени на работу.

Это уже весомые доводы для самостоятельно сборки оборудования. Схема не отличается сложностью, поэтому дешево переделать инвертор или полуавтомат по силам каждому.

В заключение обратим внимание на то, что работать с плазморезкой необходимо опытному специалисту. Лучше всего если это сварщик. Если же опыта мало, то рекомендуем сначала изучить технологию работы с фото и видео, а после этого приступать к выполнению поставленных задач.

Принцип действия большинства плазматронов мощностью от нескольких кВт до нескольких мегаватт, практически один и тот же. Между катодом, выполненным из тугоплавкого материала, и интенсивно охлаждаемым анодом, горит электрическая дуга.

Через эту дугу продувается рабочее тело (РТ) - плазмообразующий газ, которым может быть воздух, водяной пар, или что другое. Происходит ионизация РТ, и в результате на выходе получаем четвертое агрегатное состояние вещества, называемое плазмой.

В мощных аппаратах вдоль сопла ставится катушка эл.магнита, он служит для стабилизации потока плазмы по оси и уменьшения износа анода.

В этой статье описывается уже вторая по счету конструкция, т.к. первая попытка получить устойчивую плазму не увенчалась особым успехом. Изучив устройство "Алплаза", мы пришли к выводу что повторять его один в один пожалуй не стоит. Если кому интересно - все очень хорошо описано в прилагаемой к нему инструкции.

Наша первая модель не имела активного охлаждения анода. В качестве рабочего тела использовался водяной пар из специально сооруженного электрического парогенератора - герметичный котел с двумя титановыми пластинками, погруженными в воду и включенными в сеть 220V.

Катодом плазматрона служил вольфрамовый электрод диаметром 2 мм который быстро отгорал. Диаметр отверстия сопла анода был 1.2 мм, и оно постоянно засорялось.

Получить стабильную плазму не удалось, но проблески все же были, и это стимулировало к продолжению экспериментов.

В данном плазмогенераторе в качестве рабочего тела испытывались пароводяная смесь и воздух. Выход плазмы получился интенсивнее с водяным паром, но для устойчивой работы его необходимо перегревать до температуры в не одну сотню градусов, чтобы не конденсировался на охлажденных узлах плазматрона.

Такой нагреватель еще не сделан, поэтому эксперименты пока что продолжаются только с воздухом.

Фотографии внутренностей плазматрона:

Анод выполнен из меди, диаметр отверстия сопла от 1.8 до 2 мм. Анодный блок сделан из бронзы, и состоит из двух герметично спаянных деталей, между которыми существует полость для прокачки охлаждающей жидкости - воды или тосола.

Катодом служит слегка заостренный вольфрамовый стержень диаметром 4 мм, полученный из сварочного электрода. Он дополнительно охлаждается потоком рабочего тела, подаваемого под давлением от 0.5 до 1.5 атм.

А вот полностью разобранный плазматрон:

Электропитание подводится к аноду через трубки системы охлаждения, а к катоду - через провод, прицепленный его держателю.

Запуск, т.е. зажигание дуги, производится закручиванием ручки подачи катода до момента соприкосновения с анодом. Затем катод надо сразу же отвести на расстояние 2..4 мм от анода (пара оборотов ручки), и между ними продолжает гореть дуга.

Электропитание, подключение шлангов подачи воздуха от компрессора и системы охлаждения - на следующей схеме:

В качестве балластного резистора можно использовать любой подходящий электронагревательный прибор мощностью от 3 до 5 кВт, например подобрать несколько кипятильников, соединенных параллельно.

Дроссель выпрямителя должен быть рассчитан на ток до 20 A, наш экземпляр содержит около сотни витков толстой медной проволоки.

Диоды подойдут любые, рассчитанные на ток от 50 А и выше, и напряжение от 500 V.

Будьте осторожны! Этот прибор использует бестрансформаторное питание от сети.

Воздушный компрессор для подачи рабочего тела взят автомобильный, а для прокачки охлаждающей жидкости по замкнутому контуру используется автомобильный омыватель стекол. Электропитание к ним подводится от отдельного 12-вольтового трансформатора с выпрямителем.

Немного о планах на будущее

Как показала практика, и эта конструкция тоже оказалась экспериментальная. Наконец-то получена стабильная работа в течение 5 - 10 минут. Но до полного совершенства еще далеко.

Сменные аноды постепенно выгорают, а делать их из меди, да еще с резьбой, затруднительно, уж лучше бы без резьбы. Система охлаждения не имеет прямого контакта жидкости со сменным анодом, и из-за этого теплообмен оставляет желать лучшего. Более удачным был бы вариант с прямым охлаждением.

Детали выточены из имевшихся под рукой полуфабрикатов, конструкция в целом слишком сложна для повторения.

Также необходимо найти мощный развязывающий трансформатор, без него пользоваться плазматроном опасно.

И под завершение еще снимки плазматрона при разрезании проволоки и стальных пластинок. Искры летят почти на метр:)



На промышленных предприятиях, небольших мастерских, при проведении строительных и ремонтных работ используются ручной плазморез, когда необходимо сделать сварку или резку изделий из металла, а также специальное оборудование оснащенное системами ЧПУ. Для выполнения небольших по объему работ, может использоваться плазморез собранный своими руками из инвертора, который способен обеспечить высокое качество реза или шва с учетом выполняемых операций.

Принцип действия плазмореза

При включении источника питания ток начинает поступать в рабочую зону во внутреннюю камеру плазмореза, где активируется электрическая дежурная дуга между наконечником сопла и электродом. Образующая дуга заполняет канал сопла, куда под большим давлением начинает подаваться воздушная смесь, которая за счет высокой температуры 6000-8000 °C сильно нагревается и увеличивается в объеме от 50 до 100 раз. За счет внутренней формы сужающегося сопла, которое имеет форму конуса поток воздуха, сжимается, разогреваясь до температуры на выходе равной 25000 — 30000 °C, с образованием плазменной струи производящей резку обрабатываемой болванки. Причем первоначально активированная дежурная дуга гаснет и активируется рабочая между электродом и изделием из металла. Образующиеся продукты от воздействия плазменного горения и плавки металла удаляются за счет силы струи.

Рис 1 Проведение операций по разделке металла, где необходим раскрой или сварка изделия, используя ручной самодельный изготовленный своими руками или профессиональный плазморез.

Оптимальными показателями для рабочего процесса являются:

  1. подача газа со скоростью до 800 м/сек;
  2. показатель тока может составлять до 250 — 400 А.

Схема 1. Чертеж процесса плазменной разделки обрабатываемого изделия.

Ручной плазморез собранный с использованием инвертора в основном применяется для обработки заготовок и отличается небольшим весом и экономным расходом электроэнергии.

Подбор составных частей плазмореза

Для сборки плазменного резака, используя чертежи (на базе инвертора), своими руками необходимы агрегаты:

  1. устройство подачи газа под давлением – компрессор;
  2. плазменный резак;
  3. электротехническое устройство – инвертор, обеспечивающий силу тока для образования электрической дуги;
  4. рабочие шланги высокого давления для подачи воздуха и защищенный электрический кабель.

Для подачи воздуха подбираем компрессор с учетом выходного объема в течение 1 мин. Производственные компании выпускают 2 вида компрессоров:

  1. аппарат поршневой;
  2. аппарат винтовой (который обладает меньшим расходом электроэнергии, легче, но 40-50% дороже).

Рис. 2 Плазморез (аппарат) с комплектом кабеля для резака и соединения с заготовкой (в качестве анода).

Поршневые компрессоры подразделяются на масляные и без применения масла, по принципу привода — с ременным или прямым соединением элементов.
При эксплуатации компрессоров необходимо соблюдать ряд правил:

  1. при отрицательной температуре окружающей среды необходимо предварительно прогревать масло, содержащееся в картере;
  2. необходимо регулярно менять воздушный (входной) фильтр;
  3. строго контролировать уровень масла в картере;
  4. не реже 1 раз полгода необходимо осуществлять полную очистку агрегатов от посторонних примесей;
  5. по окончании работ необходимо сделать сброс давления (с помощью регулятора) в системе.

При ремонтных работах часто используется продукция компании ORLIK KOMRESSOR (Чехия). Аппарат ORL 11 позволяет производить резку заготовки с использованием силы тока 200-440 А и воздушно-газового потока поступающего под давлением.

В комплект оборудования входит:

  1. компрессор;
  2. блок фильтров магистральных для воздушно-газовой смеси;
  3. осушители газа;
  4. ресивер.

На выходе из агрегата поступает очищенный воздух от масла, пыли и влаги. Примером винтовых компрессоров является продукция фирмы Atlas Copco (Швеция) серии СА. Устройство оснащено для очищения воздуха автоматической системой удаления конденсата.

Плазматрон — специальный аппарат, в котором с помощью электрического тока образуется электродуга разогревающая в камере подаваемый под давлением воздух с образованием режущего потока плазмы.

Резак состоит из элементов:

  1. специального держателя с электродом;
  2. изолирующей прокладки разделяющей сопло и электродный узел;
  3. камеры образования плазмы;
  4. сопла выходного для образования плазменной струи (см. чертежи);
  5. снабжающих систем;
  6. элементов тангенциальной подачи плазмы (на некоторых моделях) для стабилизации дугового разряда.

По способу выполнения работ (сварка или резка) резаки подразделяются:

  1. Двухпоточные, используемые в восстановительных, окислительных и инертных средах.
  2. Газовые инертные (с использованием гелия, аргона), восстановительные (водорода, азота).
  3. Газовые окислительные (в состав воздушно-газовой смеси входит кислород).
  4. Газовые с применением стабилизационной (газожидкостной) дуги.

Катод плазматрона изготавливается в виде стержня или вставок из вольфрама, гафния, циркония. Широкое распространение получили плазматроны с гильзовым катодом, применяемым при резке с использованием воздушно-газовой потока под давлением.

Для проведения резки изделий в окислительной среде используется пустотный катод, изготовленный из меди с принудительной системой охлаждения с помощью воды.

Рис. 3 Переносной аппарат (инвертор) для осуществления плазменной резки.

Плазморез двухпоточный (инверторный) оснащаются 2-мя соосными соплами наружным и внутренним. Поступающий газ во внутреннее сопло считается первичным, а наружное – дополнительным, причем газы могут иметь различный состав и объем.

Плазморез со стабилизацией дуги за счет подачи газожидкостного потока имеет отличие, которое заключается в подаче воды в факельную камеру для стабилизации состояния дугового разряда.

Для активации рабочей дуги в качестве анода используется заготовка, которая с помощью зажимов и кабеля подсоединяется к инвертору.

В качестве энергетической установки для осуществления процесса плазменной резки используется устройство (инвертор), обеспечивающее необходимую силу тока, которое обладает более высоким КПД, чем трансформатор, но возможности по обработке металла у трансформатора значительно выше.

Схема 2. Чертеж источника питания плазматрона своими руками.

Преимущества инвертора:

  1. возможность равномерно изменять параметры;
  2. небольшой вес;
  3. устойчивое состояние рабочей дуги;
  4. высокое качество реза или сварки.

В комплект оборудования также входит набор шлангов высокого давления для подсоединения стационарного компрессора и соединительный электрический кабель.

Для сборки плазмореза своими руками разрабатывается схема устройства с указанием необходимых агрегатов отвечающих требуемым характеристикам, которая должна включать все дополнения и изменения, используемые при сборке с приведением необходимых расчетов наиболее важных показателей. Самодельный плазморез своими руками можно собрать, используя готовые блоки и агрегаты, производимые специализированными компаниями при этом необходимо сделать точные расчеты и согласование выходных параметров протекающих процессов.

Особенности маркировки плазморезов

Выпускаемые промышленными предприятиями плазморезы можно разделить на 2 категории:

  1. агрегаты машинной резки;
  2. ручные.

Ручные резаки более доступны по цене при необходимости сборки своими руками. Производимые модели имеют специальную маркировку:

  1. ММА – аппарат предназначен для дуговой сварки с помощью индивидуального электрода;
  2. CUT – аппарат (плазморез) используется для разделки металла;
  3. TIQ — аппарат применяется для работ, где необходима аргонная сварка.

Производственные предприятия выпускают оборудование для резки металла:

  1. Профи CUT 40 (горелка РТ-31, допустимая толщина реза – 16 мм, расход воздушно-газовой смеси– 140 л/мин, ресивер объемом 50 л);
  2. Профи CUT 60 (горелка Р-80, допустимая толщина реза заготовки — 20 мм, расход воздушно-газовой смеси – 170 л/мин.);
  3. Профи CUT 80 (горелка Р. – 80, допустимая толщина реза заготовки – 30 мм, расход воздушно-газовой смеси – 190 л/мин.);
  4. Профи CUT 100 (горелка А-101, допустимая толщина реза заготовки – 40 мм, расход воздушно-газовой смеси — 200 л/мин.), ресивер объемом 100 л.

Изготовление плазмореза с ЧПУ своими руками

Плазморез оснащенный ЧПУ должен иметь унифицированную сборку, используя чертежи, выполненные на основе подготовленного технического задания изделия, куда входят:

  1. стол рабочий;
  2. передача ременная;
  3. блок управления функциями;
  4. элементы шаговые;
  5. направляющие линейные;
  6. система регулировки высоты реза;
  7. блок управления ЧПУ;

Схема 3. Чертеж устройства инвертора для плазменной резки.

Чертежи всех блоков плазмореза можно приобрести с учетом требуемой мощности и характеристик установки и финансовых возможностей или сделать своими руками при наличии опыта и знаний.

Для комплектования и сборки станка с ЧПУ необходимо, используя чертежи, изготовить ряд элементов:

  1. основание для сварки стола;
  2. собирается прочная рама с последующей окраской;
  3. крепятся опорные стойки;
  4. собирается водяной стол;
  5. устанавливаются крепления и сами рейки;
  6. монтируются направляющие линейные;
  7. монтируется облицовка стола;
  8. устанавливаются направляющие совместно с порталом;
  9. портал оснащается двигателем и сигнальными датчиками;
  10. монтируются направляющие, двигатель направляющей Y и зубчатая рейка регулирования позиционирования;
  11. монтируется направляющая с оснащением двигателем;
  12. монтируется сигнальный датчик поверхности металла;
  13. монтируется кран для удаления воды со стола;
  14. прокладываются соединительные кабели-каналы X.Z.Y;
  15. провода изолируются и закрываются с помощью облицовки;
  16. монтируется рабочий резак;
  17. собирается и монтируется устройство с ЧПУ.

Проведение операций по изготовлению и сборке плазмотрона с ЧПУ, должны выполняться только при наличии квалифицированных специалистов. Схема устройства (чертежи) должна включать все необходимые элементы, обеспечивающие высокое качество работы и безопасность выполнения резки металла. Оснащение предприятий оборудованием с ЧПУ позволяет повысить производительность труда и сложность выполнения операций. Сделать производственные процессы, выполняемые с помощью оборудования с ЧПУ более экономичными за счет повышения производительности труда и сокращения скорости обработки изделий.

Вам также могут быть интересны статьи:

Как сделать строгальный станок по дереву своими руками Как сделать гильотину для резки металла своими руками?

Бесспорно многие из нас видели видео на ютубе, где Виталий Богачев собрал плазменный резак из обычного сварочного аппарата дуговой сварки
Постараюсь объяснить простыми словами без всякого фанатизма. Виталий, удалил вторичную обмотку на сварочном трансформаторе и вместо нее намотал новую вторичную обмотку кабелем меньшего сечения, что бы поднять выходное напряжение до 200В. Следом установил диодный мост на радиаторы и дроссель намотанный на железе, походу от большего сварочного трансформатора. Подключил это дело к резаку.
Для продувки использовал обычный воздух накачиваемый компрессором

Вот первое видео в котором Виталий описал конструкцию прибора

Во втором видео Виталий показал как работает его самопальный плазменный резак. Видно, что резак режет метал до 8мм, но Виталий не показывает сам аппарат во время резки, даже элементарно зайти в это помещение и показать куда тянется рукав от резака, этого нет

Честно, ну очень меня поманила эта идея и захотелось собрать подобное устройство, но вот что насторожило. Почему заводские аппараты для плазменной резки стоят приличных денег, если в них нет ничего такого сложного, может в видео есть подвох и на самом деле видео для пиара

Во первых нужен сварочный аппарат для дуговой сварки переменного тока 200А, а точнее таких аппаратов нужно пара. Первый трансформатор будет силовой, второй трансформатор будет в качестве дросселя. На сварочном трансформаторе три обмотки, две первичные обмотки 0-220-400В, а так же вторичная обмотка 40В. Вот что я планирую делать с этими трансформаторами, разрезать оба трансформатора, снять вторичную обмотку с первого и на ее место поставить первичку второго трансформатора, вот и должно у меня получится на вторичной обмотке 200В. Теперь о дросселе. Остается у меня железо со второго трансформатора, а так же две вторичные обмотки, которые можно одеть на второй сердечник и последовательно соединить. Должен получиться великолепный дроссель с пока неизвестной индуктивностью.
Посмотрел на эти сварочные трансформаторы в Яндекс маркете и нашел самый дешевый вариант по 2 376 ₽ за один. Значит за два с учетом доставки выйдет примерно 6,500Р.
Вот такие сварочные аппараты

Иду далее, нужны 4 диода напряжением от 600В, но лучше 1000В. Ток для диодов лучше выбрать побольше скажем 150А будет в самый раз. За этим делом обращусь ка я на AliExpress. Нашел подходящий диодный мостик на 150А 1600В на обратный пробой, такой хороший запас по обратному напряжению не будет лишний.


Цена на такой диодный мостик 770,33 руб., вот ссылка для покупки. Так же нужен радиатор для охлаждения диодного моста, лучше чем радиатор с процессора ПК идей нет, такой радиатор можно на барахолке купить за 100-200Р. И того 1000Р за выпрямитель

Для работы плазменного резака нужен компрессор, ну это дело решенное, давно собран. Компрессор это хорошо, а вот воздух должен быть чистым, без масла и влаги. Значит надо перед резаком ставить осушитель, который опять же лучше заказать с Китая. Приглянулся мне фильтр AF2000-02 G1/4 за 442,20 руб.


Осушитель выдерживает давление в 1.5 МПа, что вполне устраивает. Так же нужен клапан для управления, клапан буду использовать типа такого, цена на него 480Р. Вот ссылка

Так же для соединения между собой нужны штуцера диаметром 1\4 дюйма


Как вариант можно заказать 5 штучек за 276 руб. ссылка вот

Следующий компонент плазменного резака и пожалуй основной это сама горелка. Такая горелочка стоит немало у нас, но и в Китае просят за нее 2400Р.


Из того что предлагают Китайцы, это самый дешевый вариант. Заказать такой можно по ссылке . Так же для подключения этого рукава нужен штуцер, такой же как я показывал в статье про . Что то найти толкового ничего не смог в интернете, поэтому прийдется заказывать у токаря. Это еще рублей 600-800

Еще несколько компонентов надо для полного комплекта.
Несколько релюшек для управления силовым трансформатором и клапанном газа.

Такие реле можно заказать из Китая по 100 рублей
Нужен блок питания 12В для питания клапана и реле
Такой блок питания стоит в Китае 232 р, купить можно по этой ссылке . Разъем под кнопку управления на держаке.

Этой кнопкой включается трансформатор, открывается клапан и включается осциллятор. С Китая такой стоит 66 рублей, комплект мама-папа. Так же для розжига дуги плазмы без контакта нужен высоковольтный осцилятор

Готовый модуль из Китая для питания от переменного напряжения 220В модуль стоит 1500 рублей, ссылка

Домашние мастера, занимающиеся обработкой металла, сталкиваются с необходимостью раскраивать металлические заготовки. Это можно сделать при помощи угловой шлифовальной машины (болгарки), кислородного резака или плазмореза.

  1. Болгарка. Качество среза очень высокого уровня. Однако выполнить фигурный раскрой невозможно, особенно если это касается внутренних отверстий с изогнутыми краями. К тому же есть ограничения по толщине металла. Тонкие листы резать болгаркой невозможно. Главное преимущество – ценовая доступность;
  2. Кислородный резак. Может вырезать отверстие любой конфигурации. Но добиться ровного среза невозможно в принципе. Края получаются рваными, с каплями оплавленного металла. Тяжело режется толщина более 5 мм. Приспособление не слишком дорогое, но требуется иметь большой запас кислорода для работы;
  3. Плазморез. Доступным этот прибор не зазовешь, но высокая стоимость оправдана качеством среза. После раскроя, заготовка практически не нуждается в дополнительной обработке.

Учитывая неподъемную для большинства домашних мастеров цену – многие умельцы «кулибины» изготавливают плазменный резак .

Способов несколько – можно создать конструкцию полностью «с нуля», или использовать готовые приспособления. Например – из сварочного аппарата, несколько модернизированного под новые задачи.

Изготовить плазморез своими руками реальная задача, но сначала необходимо понять, как он работает.

Общая схема изображена на иллюстрации:

Устройство плазмореза

Блок питания.

Он может быть сконструирован по-разному. Трансформатор имеет большие габариты и массу, но позволяет резать более толстые заготовки.

Потребление электроэнергии выше, это необходимо учитывать при выборе точки подключения. Такие блоки питания мало чувствительны к перепадам входного напряжения.